Y. Oleksii, E. Get’man, S. Radio, L. I. Ardanova, E. Zubov
{"title":"Isomorphous substitutions and Stability of Solid Solutions in La1-xLnxF3, Ln = Ce-Ho Systems","authors":"Y. Oleksii, E. Get’man, S. Radio, L. I. Ardanova, E. Zubov","doi":"10.1109/NAP51885.2021.9568596","DOIUrl":null,"url":null,"abstract":"Within the framework of the crystal–energy theory of isomorphous substitutions, the mixing energies and critical temperatures of decomposition (stability) of solid solutions with the tizonite structure in the La1-x Lnx F3, Ln = Ce–Ho systems are calculated. A diagram of the thermodynamic stability of solid solutions is presented, which makes it possible to predict the limits of substitutions depending on the temperature or the temperature of decomposition according to the given limits of substitutions. The regions of thermodynamic stability, instability and metastability of solid solutions are determined. The calculation results in a number of systems that do not contradict the experimental data described earlier in the literature. They can be useful in choosing the ratio of components in “mixed” matrices, the amount of activator in luminescent, laser and other practically important materials, as well as for the immobilization of toxic and radioactive waste.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"26 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Within the framework of the crystal–energy theory of isomorphous substitutions, the mixing energies and critical temperatures of decomposition (stability) of solid solutions with the tizonite structure in the La1-x Lnx F3, Ln = Ce–Ho systems are calculated. A diagram of the thermodynamic stability of solid solutions is presented, which makes it possible to predict the limits of substitutions depending on the temperature or the temperature of decomposition according to the given limits of substitutions. The regions of thermodynamic stability, instability and metastability of solid solutions are determined. The calculation results in a number of systems that do not contradict the experimental data described earlier in the literature. They can be useful in choosing the ratio of components in “mixed” matrices, the amount of activator in luminescent, laser and other practically important materials, as well as for the immobilization of toxic and radioactive waste.