{"title":"用ADHIE-FDTD方法对纳米线谐振隧道二极管电荷传递的不确定度进行量化","authors":"P. Decleer, D. Vande Ginste","doi":"10.1109/NAP51885.2021.9568552","DOIUrl":null,"url":null,"abstract":"The influence of barrier thickness variability on the charge transfer characteristics of an InP/InAs/InP nanowire resonant-tunneling diode is studied. The transmission probability through the diode is calculated by solving the time-dependent effective-mass Schrödinger equation with the Alternating-Direction Hybrid Implicit-Explicit (ADHIE) Finite-Difference Time-Domain (FDTD) method. This recently developed method is tailored towards multiscale problems and thus allows for a much faster evaluation of the transmission probability compared to the commonly used leapfrog FDTD method. Accurate and efficient modeling of small geometric features with the ADHIE-FDTD method now facilitates the development of a robust Monte Carlo method to assess the significant influence of the thickness of the barriers on the transmission probability and the current-voltage characteristic.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"23 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Quantification of Charge Transfer through a Nanowire Resonant-Tunneling Diode with an ADHIE-FDTD Method\",\"authors\":\"P. Decleer, D. Vande Ginste\",\"doi\":\"10.1109/NAP51885.2021.9568552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of barrier thickness variability on the charge transfer characteristics of an InP/InAs/InP nanowire resonant-tunneling diode is studied. The transmission probability through the diode is calculated by solving the time-dependent effective-mass Schrödinger equation with the Alternating-Direction Hybrid Implicit-Explicit (ADHIE) Finite-Difference Time-Domain (FDTD) method. This recently developed method is tailored towards multiscale problems and thus allows for a much faster evaluation of the transmission probability compared to the commonly used leapfrog FDTD method. Accurate and efficient modeling of small geometric features with the ADHIE-FDTD method now facilitates the development of a robust Monte Carlo method to assess the significant influence of the thickness of the barriers on the transmission probability and the current-voltage characteristic.\",\"PeriodicalId\":6735,\"journal\":{\"name\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"23 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51885.2021.9568552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty Quantification of Charge Transfer through a Nanowire Resonant-Tunneling Diode with an ADHIE-FDTD Method
The influence of barrier thickness variability on the charge transfer characteristics of an InP/InAs/InP nanowire resonant-tunneling diode is studied. The transmission probability through the diode is calculated by solving the time-dependent effective-mass Schrödinger equation with the Alternating-Direction Hybrid Implicit-Explicit (ADHIE) Finite-Difference Time-Domain (FDTD) method. This recently developed method is tailored towards multiscale problems and thus allows for a much faster evaluation of the transmission probability compared to the commonly used leapfrog FDTD method. Accurate and efficient modeling of small geometric features with the ADHIE-FDTD method now facilitates the development of a robust Monte Carlo method to assess the significant influence of the thickness of the barriers on the transmission probability and the current-voltage characteristic.