Journal of Superhard Materials最新文献

筛选
英文 中文
Construction of Diamond/Graphene Composite Structure via a Low-Temperature Heat Treatment 通过低温热处理构建金刚石/石墨烯复合结构
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040051
Danhui Han, Junlong Liu, Chong Peng, Baoyan Liang
{"title":"Construction of Diamond/Graphene Composite Structure via a Low-Temperature Heat Treatment","authors":"Danhui Han,&nbsp;Junlong Liu,&nbsp;Chong Peng,&nbsp;Baoyan Liang","doi":"10.3103/S1063457624040051","DOIUrl":"10.3103/S1063457624040051","url":null,"abstract":"<p>A diamond/graphene composite structure can be obtained using graphene oxide (GO) to undergo a significant thermal reduction reaction at approximately 200°C. The prepared composites were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The effects of different particle sizes and diamond contents on the products’ phase composition and microstructure were studied. Results indicate that GO underwent a significant thermal reduction reaction at approximately 200°C. Most GO materials were reduced to graphene. They underwent expansion and were peeled off into an organ-like shape. A graphene coating was formed on the surface of diamond particles via a simple heat treatment from the mixtures of diamond and GO powders. The coating effect of large diamond particles was poor because of their high inertness. A quasi core–shell structure of diamond/graphene composite structure can be obtained using fine-grained diamonds.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"275 - 284"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Melting of Boron Arsenide under Pressure 论砷化硼在压力下的熔化
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040105
Vladimir L. Solozhenko
{"title":"On Melting of Boron Arsenide under Pressure","authors":"Vladimir L. Solozhenko","doi":"10.3103/S1063457624040105","DOIUrl":"10.3103/S1063457624040105","url":null,"abstract":"<p>Melting of cubic boron arsenide, BAs, has been studied at pressures up to 8 GPa using <i>in situ</i> electrical resistivity measurements. It was found that above 2.5 GPa BAs melts congruently, and the melting curve has a negative slope (–53 ± 5 K/GPa), indicating a higher density of the melt as compared to the solid phase. The melting point of BAs at ambient pressure has been estimated to be 2410(30) K.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"327 - 329"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Sintering Pressure on the Properties of PcBN Carbide Inserts 烧结压力对碳化 PCBN 刀片性能的影响
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040129
Xiangxiang Yin,  Peicheng Mo
{"title":"Effect of Sintering Pressure on the Properties of PcBN Carbide Inserts","authors":"Xiangxiang Yin,&nbsp; Peicheng Mo","doi":"10.3103/S1063457624040129","DOIUrl":"10.3103/S1063457624040129","url":null,"abstract":"<p>PcBN (polycrystalline cubic boron nitride) carbide insert were synthesized with cBN/Zr/Al as raw material under high temperature and pressure. The effects of synthesis pressure on the interfacial morphology, wear resistance, microhardness and flatness of PcBN carbide insert were investigated. The test results show that with the increase of synthesis pressure, the composite interfacial bond is more dense and homogeneous, and the bonding strength between the cBN layer and the alloy substrate is higher. Additionally, the density, microhardness and abrasion resistance of the PcBN carbide insert were improved. Meanwhile, under the ultra-high pressure, the thickness deviation of the PcBN carbide insert gradually decreases, the thickness distribution gradually becomes uniform, and the flatness of the samples gradually becomes better.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"267 - 274"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of wSiC and wSi3N4 Whiskers on the Ultimate Dynamic Tensile Strength of cBN Composites from the BL Group wSiC 和 wSi3N4 晶须对 BL 组 cBN 复合材料极限动态拉伸强度的影响
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040117
D. A. Stratiichuk, L. M. Devin, S. V. Richev, V. Z. Turkevich, Y. Y. Rumiantseva
{"title":"Effect of wSiC and wSi3N4 Whiskers on the Ultimate Dynamic Tensile Strength of cBN Composites from the BL Group","authors":"D. A. Stratiichuk,&nbsp;L. M. Devin,&nbsp;S. V. Richev,&nbsp;V. Z. Turkevich,&nbsp;Y. Y. Rumiantseva","doi":"10.3103/S1063457624040117","DOIUrl":"10.3103/S1063457624040117","url":null,"abstract":"<p>The effect of wSiC and wSi<sub>3</sub>N<sub>4</sub> whiskers on the ultimate dynamic tensile strength <span>(R_{{text{m}}}^{{text{d}}})</span> of superhard BL group cBN composites synthesized in the cBN–NbN–Al and cBN–NbN–Al<sub>2</sub>O<sub>3</sub> systems is considered. It is demonstrated that <span>(R_{{text{m}}}^{{text{d}}})</span> is ranged from 182 to 333 MPa and depends on the character of a filler. It is pointed out that the addition of wSiC whiskers to the initial sintering mixture increases <span>(R_{{text{m}}}^{{text{d}}})</span> of sintered ceramic averagingly by 10–15% and, at the same time, the presence of Al<sub>2</sub>O<sub>3</sub> leads to a slight decrease in the material strength.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"330 - 332"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Mechanism of Optical Glass Polishing 光学玻璃抛光的量子机制
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S106345762404004X
Yu. D. Filatov
{"title":"Quantum Mechanism of Optical Glass Polishing","authors":"Yu. D. Filatov","doi":"10.3103/S106345762404004X","DOIUrl":"10.3103/S106345762404004X","url":null,"abstract":"<p>As a result of studying the mechanism of optical glass polishing by means of disperse systems from ceria powders, it has been established that glass is eliminated via the removal of sludge nanoparticles from the treated surface during its interaction with polishing powder particles, which occurs in an open microresonator formed by the surfaces of the treated material and polishing powder particles due to Förster resonant energy transfer between the energy levels of polishing powder and treated material particles. It has been shown that, in a bimodal system with a discrete spectrum of natural frequencies, the number of sludge nanoparticles generated in the treated surface–disperse system–lap surface grows with an increase in the bulk wear coefficient, the lifetime of the excited state of treated surface clusters, and the microresonator <i>Q</i> factor. A method of calculating the treated material removal rate and the roughness parameters of polished surfaces has been developed to establish that the deviation of the calculated polishing rate from experimental data is less than 2%, and the errors of calculating the arithmetic mean <i>R</i><sub>a</sub> and mean square <i>R</i><sub>q</sub> deviations of the polished surface profile attain 10%, and the calculated maximum profile height <i>R</i><sub>max</sub> is 40–50% underestimated as compared to experimental data.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"303 - 313"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Indicators of Grinding Tools with Cubic Boron Nitride Grains with Combined Wear-Resistant Coatings 立方氮化硼晶粒与复合耐磨涂层磨削工具的性能指标
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040087
V. I. Lavrinenko, V. G. Poltoratskyi, O. O. Pasichnyi, V. Yu. Solod
{"title":"Performance Indicators of Grinding Tools with Cubic Boron Nitride Grains with Combined Wear-Resistant Coatings","authors":"V. I. Lavrinenko,&nbsp;V. G. Poltoratskyi,&nbsp;O. O. Pasichnyi,&nbsp;V. Yu. Solod","doi":"10.3103/S1063457624040087","DOIUrl":"10.3103/S1063457624040087","url":null,"abstract":"<p>We investigated the effect of surface coatings on cubic boron nitride (cBN) grains regarding tool wear resistance and processing efficiency. At a low processing rate (50 mm<sup>3</sup>/min), the wear resistance enhancement factor was 1.66 for the B<sub>2</sub>O<sub>3</sub> + CeO<sub>2</sub> coating. Conversely, at a higher processing rate (200 mm<sup>3</sup>/min), the wear resistance enhancement factor decreased to 1.13 for the B<sub>2</sub>O<sub>3</sub> + B<sub>4</sub>C coating. The study demonstrated that under these processing conditions, surface coating of cBN grains with a combination of oxide and carbide (B<sub>2</sub>O<sub>3</sub> + SiC) is preferable. This preference is based on improved grinding wheel wear resistance and reduced surface roughness (<i>R</i><sub>a</sub>) of the machined surface. Furthermore, at increased grinding efficiency, any coating on cBN grain surfaces decreases the <i>t</i>50 parameter, thereby decreasing the holding capacity of the rough surface generated during grinding with such wheels.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"322 - 326"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic HPHT Diamonds as Diamond-Bearing Rock Pseudoindicators 作为含钻岩石伪指标的合成 HPHT 钻石
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040075
V. M. Kvasnytsya
{"title":"Synthetic HPHT Diamonds as Diamond-Bearing Rock Pseudoindicators","authors":"V. M. Kvasnytsya","doi":"10.3103/S1063457624040075","DOIUrl":"10.3103/S1063457624040075","url":null,"abstract":"<p>A comparison between synthetic HPHT diamonds and natural diamonds has been conducted, highlighting substantial differences between them. Key distinctive features of synthetic HPHT diamonds have been identified, facilitating their differentiation from natural counterparts. The authenticity of HPHT diamonds found in rocks from the Ukrainian crystalline shield has been examined. Samples from concentrates of crystalline and terrigenous diamond-bearing rocks, exhibiting similarities to synthetic HPHT crystals, serve as pseudoindicators of diamond potential in geological formations and necessitate thorough investigation.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"260 - 266"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Wear Resistance of Cdiamond–(WC–Co)–ZrO2 Composite Impregnated Crowns in Granite Drilling 研究花岗岩钻孔中 Cdiamond-(WC-Co)-ZrO2 复合材料浸渍冠的耐磨性
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040099
B. T. Ratov, V. A. Mechnik, E. S. Gevorkyan, N. A. Bondarenko, V. M. Kolodnitskyi, N. S. Akhmetova, D. L. Korostyshevskyi, R. U. Bayamirova
{"title":"Investigating the Wear Resistance of Cdiamond–(WC–Co)–ZrO2 Composite Impregnated Crowns in Granite Drilling","authors":"B. T. Ratov,&nbsp;V. A. Mechnik,&nbsp;E. S. Gevorkyan,&nbsp;N. A. Bondarenko,&nbsp;V. M. Kolodnitskyi,&nbsp;N. S. Akhmetova,&nbsp;D. L. Korostyshevskyi,&nbsp;R. U. Bayamirova","doi":"10.3103/S1063457624040099","DOIUrl":"10.3103/S1063457624040099","url":null,"abstract":"<p>The study investigated the wear rate dependences of diamond-impregnated drill bits consisting of composite diamond-containing materials (CDMs): specifically, 25C<sub>diamond</sub>–70.5WC–4.5Co and 25C<sub>diamond</sub>–68.62WC–4.38Co‒2ZrO<sub>2</sub>. These materials were fabricated via spark plasma sintering at temperatures ranging from 20 to 1350°C under a pressure of 30 MPa for 3 min. Testing was conducted under rotational speeds and axial load conditions typical for granite drilling. It was demonstrated that incorporating 2 wt % of ZrO<sub>2</sub> nanopowder into the composition of 25C<sub>diamond</sub>–70.5WC–4.5Co resulted in a threefold reduction in wear rate. The highest wear resistance of these diamond-impregnated drill bits was observed at rotational speeds of 250 rpm and axial loads of 900 kg, as well as at 750 rpm and 1250 kg axial load. Comparatively, the enhanced wear resistance of diamond-impregnated drill bits made from 25C<sub>diamond</sub>–68.62WC–4.38Co‒2ZrO<sub>2</sub>, in contrast to those made from 25C<sub>diamond</sub>–70.5WC–4.5Co, can be attributed to factors such as finer grain size, higher relative density, improved strength under compression and bending, increased fracture toughness, and the formation of strong bonding between diamond grains and the hard-alloy matrix. These findings, combined with the fine-grained structure of the hard-alloy matrix and high diamond retention, indicate that these diamond-impregnated drill bits have potential for application in developing new tools with superior operational properties for drilling hard rock formations.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"314 - 321"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Estimates for the Packing Density of Binary Powder Systems: Review and Comparative Analysis 二元粉末体系堆积密度的理论估算:回顾与比较分析
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040063
V. I. Kushch, V. G. Kulych
{"title":"Theoretical Estimates for the Packing Density of Binary Powder Systems: Review and Comparative Analysis","authors":"V. I. Kushch,&nbsp;V. G. Kulych","doi":"10.3103/S1063457624040063","DOIUrl":"10.3103/S1063457624040063","url":null,"abstract":"<p>The review and comparative analysis of known literature approaches and methods for predicting the packing density of binary powder systems are carried out. A theoretical model is proposed for a binary mixture to provide the spline approximation of calculated and research data with an appropriate accuracy. The model parameters are physical values, whose comparison for different binary systems makes it possible to estimate both the effect of a method of their formation on the packing density and the degree of adequacy to real powder materials for the available theoretical models.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"245 - 259"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation Energy of Electrical Conductivity and Characteristics of Microwave Radiation Absorption in AlN–SiC Composite AlN-SiC 复合材料的电导活化能和微波辐射吸收特性
IF 1.2 4区 材料科学
Journal of Superhard Materials Pub Date : 2024-09-06 DOI: 10.3103/S1063457624040026
V. I. Chasnyk, D. V. Chasnyk, O. M. Kaidash
{"title":"Activation Energy of Electrical Conductivity and Characteristics of Microwave Radiation Absorption in AlN–SiC Composite","authors":"V. I. Chasnyk,&nbsp;D. V. Chasnyk,&nbsp;O. M. Kaidash","doi":"10.3103/S1063457624040026","DOIUrl":"10.3103/S1063457624040026","url":null,"abstract":"<p>We investigated semiconductor composite materials of the AlN–50% SiC–Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> system, obtained by free sintering, which exhibit a high level of microwave absorption of 4.6 dB/mm. The activation energy values of electrical conductivity (<i>E</i><sub>a</sub>) for the obtained composites were calculated within the temperature range of 20–800°C. At temperatures close to room temperature (20–150 °C), <i>E</i><sub>a</sub> ranges from 0.120 to 0.075 eV and increases to 0.270–0.275 eV as the temperature rises to 350–800°C. The determined photon energy values of the electromagnetic wave, in the frequency range from 1 to 100 GHz, are from 4.13 × 10<sup>–6</sup> to 4.13 × 10<sup>–4</sup> eV. Using quantum electrodynamics at the atomic level, we described the process of microwave radiation absorption in the AlN–SiC semiconductor composites. Low-energy photons of electromagnetic waves incident on the surface of the AlN–SiC composite transfer their energy to the conduction electrons in the near-surface layers of the SiC phase and are absorbed by them. The conduction electrons emit photons at the same frequency of the electromagnetic wave, predominantly into the same SiC grains, within 10<sup>–8</sup> s. This interaction results in the absorption of electromagnetic radiation, leading to the dissipation of wave energy and subsequent heating of the entire composite: initially, the SiC phase particles and, subsequently, the AlN grains.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"285 - 292"},"PeriodicalIF":1.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信