2019 Computing in Cardiology (CinC)最新文献

筛选
英文 中文
Early Prediction of Sepsis Using Gradient Boosting Decision Trees with Optimal Sample Weighting 基于最优样本加权梯度增强决策树的脓毒症早期预测
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005700
Ibrahim Hammoud, I. Ramakrishnan, M. Henry
{"title":"Early Prediction of Sepsis Using Gradient Boosting Decision Trees with Optimal Sample Weighting","authors":"Ibrahim Hammoud, I. Ramakrishnan, M. Henry","doi":"10.23919/CinC49843.2019.9005700","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005700","url":null,"abstract":"In this work, we describe our early sepsis prediction model for the PhysioNet/Computing in Cardiology Challenge 2019. We prove that maximizing a general family of utility functions (of which the challenge utility function is a special case) is equivalent to minimizing a weighted 0-1 loss. We then utilize this fact to train an ensemble of gradient boosting decision trees using a weighted binary cross-entropy loss.Our model takes the time-series nature of the data into account by using a fixed size window of all measurements within the last 20 hours as a feature vector. Data were imputed in a way that gives the same information to the model as present to healthcare professionals in real-time. We tune the model hyper-parameters using 5-fold cross-validation. The model performance was measured on each evaluation set using the threshold that gives the maximum utility on the training set. Our best model achieves an official normalized utility score of 0.332 on the final full test set of the challenge (Team name: SBU, rank: 6th/78).","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"1 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82912538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Memristor Models for Early Detection of Sepsis in ICU Patients 忆阻器模型用于ICU患者脓毒症的早期检测
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005898
Vasileios Athanasiou, Z. Konkoli
{"title":"Memristor Models for Early Detection of Sepsis in ICU Patients","authors":"Vasileios Athanasiou, Z. Konkoli","doi":"10.23919/CinC49843.2019.9005898","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005898","url":null,"abstract":"A supervised learning technique is used to carefully train memristor models to predict at an early stage whether a patient in intensive care unit (ICU) has the sepsis. A memristor behaves as a resistor, with a (mem)resistance that changes over time within a bounded interval. The resistance value depends on the full history of an applied voltage difference across the element, in the same way as the state of the brain depends on what a person has experienced in the past. The information contained in a voltage difference time series can be encoded in the resistance value. Clinical variables measured subsequently each hour since the patient’s admittance in ICU are transformed into voltage difference signals with transformation functions. The training procedure involves the optimization of the transformation functions. The decision of whether to predict sepsis or not is taken by reading the value of the resistance. The authors have participated in the Physionet 2019 challenge with the name called \"the memristive agents\" and their best submission resulted to a utility score 0.20 on a hidden test data-set.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"33 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83697676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired Right Atrial Strain is Associated with Decompensated Hemodynamics in Pulmonary Arterial Hypertension 肺动脉高压患者右心房应变受损与失代偿性血流动力学相关
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005893
L. Zhong, S. Leng, Xiaodan Zhao, J. Tan, R. Tan
{"title":"Impaired Right Atrial Strain is Associated with Decompensated Hemodynamics in Pulmonary Arterial Hypertension","authors":"L. Zhong, S. Leng, Xiaodan Zhao, J. Tan, R. Tan","doi":"10.23919/CinC49843.2019.9005893","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005893","url":null,"abstract":"The transition of right ventricle (RV) from a compensated to decompensated state contributes to survival in pulmonary arterial hypertension (PAH). However, little is known about the significance of right atrial (RA) dysfunction on disease progression in PAH. In this context, there has been growing interest in markers of RA myocardial dysfunction. Speckle tracking echocardiography, which has been principally used to measure the myocardial strain, is technically challenging in the RA due to the thin atrial wall. Feature tracking cardiovascular magnetic resonance (FT-CMR) software designed to derive myocardial strain from CMR cine images has become available for measurements of atrial longitudinal strain. However, in subjects with relatively vigorous tricuspid annular motion, contour tracking of the RA free wall segment adjacent to the tricuspid valve is adversely affected and becomes the source of errors. In contrast to FT-CMR, we present a rapid assessable strain parameter that requires the automatic tracking of only 3 anatomical reference points – thus avoiding the segment contour tracking near the insertion of the anterior leaflet into the tricuspid annulus.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"24 1","pages":"Page 1-Page 2"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90197772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Ensemble LSTM Architecture for Clinical Sepsis Detection 用于临床脓毒症检测的集成LSTM体系结构
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005457
S. Schellenberger, Kilin Shi, J. P. Wiedemann, F. Lurz, R. Weigel, A. Koelpin
{"title":"An Ensemble LSTM Architecture for Clinical Sepsis Detection","authors":"S. Schellenberger, Kilin Shi, J. P. Wiedemann, F. Lurz, R. Weigel, A. Koelpin","doi":"10.23919/CinC49843.2019.9005457","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005457","url":null,"abstract":"Sepsis is a life-threatening condition that has to be treated at an early stage. Doctors use the Sequential Organ Failure Assessment score for the earliest possible recognition. In addition, the practitioner’s many years of experience help in order to facilitate an immediate response. Mortality decreases with every hour that sepsis is detected and treated with antibiotics. In this years PhysioNet/Computing in Cardiology Challenge the objective is to automatically detect sepsis six hours before the clinical prediction. This paper describes the implementation of an Long Short-Term Memory network for an early detection of sepsis in provided hourly physiological data. An utility score of 0.29 was achieved when testing on the full hidden test set. All entries were submitted using the team name \"404: Sepsis not found\".","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"8 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90835087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multivariate Classification of Brugada Syndrome Patients Based on the Autonomic Response During Sleep, Exercise and Head-up Tilt Testing 基于自主神经反应的Brugada综合征患者睡眠、运动和平视倾斜测试的多变量分类
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005882
M. Calvo, V. Rolle, D. Romero, N. Béhar, P. Gomis, P. Mabo, Alfredo I. Hernández
{"title":"Multivariate Classification of Brugada Syndrome Patients Based on the Autonomic Response During Sleep, Exercise and Head-up Tilt Testing","authors":"M. Calvo, V. Rolle, D. Romero, N. Béhar, P. Gomis, P. Mabo, Alfredo I. Hernández","doi":"10.23919/CinC49843.2019.9005882","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005882","url":null,"abstract":"Several autonomic markers were estimated overnight and during exercise and head-up tilt (HUT) testing for 44 BS patients, to design classifiers capable of distinguishing patients at different levels of risk. The classification performance of predictive models built from the optimization of a step-based machine-learning method were compared, so as to identify those autonomic protocols and markers best distinguishing between symptomatic and asymptomatic patients. Although exercise and HUT testing together led to better predictive results than when they were separately assessed, among all analyzed combinations, the night-based classifier presented the best performance (AUC = 95%), using the least amount of features. This optimal features subset was mostly composed of markers extracted between 4 a.m. - 5 a.m. Thus, results provide further evidence for the role of nighttime analysis, mainly during the last hours of sleep, for risk stratification in BS.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"24 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80918011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Mechanisms of Regulation of Electromechanical Function of Cardiomyocytes in the Biomechanical Model of Myocardium 心肌生物力学模型中心肌细胞机电功能调控机制的研究
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005625
V. Sholohov, V. Zverev, A. Kursanov
{"title":"Investigation of Mechanisms of Regulation of Electromechanical Function of Cardiomyocytes in the Biomechanical Model of Myocardium","authors":"V. Sholohov, V. Zverev, A. Kursanov","doi":"10.23919/CinC49843.2019.9005625","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005625","url":null,"abstract":"We developed three-dimensional model of isolated myocardial muscular preparation that takes into account the coupling of excitation with contraction in the myocardium at the cellular and tissue levels. This model describes myocardium sample using approaches and methods developed in continuum mechanics. In the model, electromechanical interactions and mechano-electric feedbacks are realized both at the micro level and at the macro level. We used non-linear partial differential equations describing the deformation of the cardiac tissue, and a detailed \"Ekaterinburg-Oxford\" (EO) cellular model of the electrical and mechanical activity of cardiomyocytes. Electrical and mechanical interactions between the cells in tissue, as well as intracellular mechano-electric feedback beat-to-beat affect the functional characteristics of coupled cardiomyocytes further, adjusting their electrical and mechanical heterogeneity to the activation timing. Model analysis suggests that cooperative mechanisms of myofilament calcium activation contribute essentially to the generation of cellular functional heterogeneity in contracting cardiac tissue.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"6 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80365611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-Task Imputation and Classification Neural Architecture for Early Prediction of Sepsis from Multivariate Clinical Time Series 基于多变量临床时间序列的脓毒症早期预测的多任务归算和分类神经结构
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005751
Yale Chang, Jonathan Rubin, G. Boverman, S. Vij, Asif Rahman, A. Natarajan, S. Parvaneh
{"title":"A Multi-Task Imputation and Classification Neural Architecture for Early Prediction of Sepsis from Multivariate Clinical Time Series","authors":"Yale Chang, Jonathan Rubin, G. Boverman, S. Vij, Asif Rahman, A. Natarajan, S. Parvaneh","doi":"10.23919/CinC49843.2019.9005751","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005751","url":null,"abstract":"Early prediction of sepsis onset can notify clinicians to provide timely interventions to patients to improve their clinical outcomes. The key question motivating this work is: given a retrospective patient cohort consisting of multivariate clinical time series (e.g., vital signs and lab measurement) and patients' demographics, how to build a model to predict the onset of sepsis six hours earlier? To tackle this challenge, we first used a recurrent imputation for time series (RITS) approach to impute missing values in multivariate clinical time series. Second, we applied temporal convolutional networks (TCN) to the RITS-imputed data. Compared to other sequence prediction models, TCN can effectively control the size of sequence history. Third, when defining the loss function, we assigned custom time- dependent weights to different types of errors. We achieved 9th place (team name = prna, utility score = 0.328) at the 2019 PhysioNet Computing in Cardiology Challenge, which evaluated our proposed model on a real-world sepsis patient cohort. At a follow-up ‘hackathon’ event, held by the challenge organizers, an improved version of our algorithm achieved 2nd place (utility score = 0.342).","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"81 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76713456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Non-Invasive Localization of Atrial Flutter Circuit Using Recurrence Quantification Analysis and Machine Learning 应用递归量化分析和机器学习的心房扑动回路无创定位
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005844
Muhammad Haziq Kamarul Azman, Olivier Meste, D. Latcu, K. Kadir
{"title":"Non-Invasive Localization of Atrial Flutter Circuit Using Recurrence Quantification Analysis and Machine Learning","authors":"Muhammad Haziq Kamarul Azman, Olivier Meste, D. Latcu, K. Kadir","doi":"10.23919/CinC49843.2019.9005844","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005844","url":null,"abstract":"Atrial flutter presents quasi-periodic atrial activity due to circular depolarization. Given the different structure of right and left atria, spatiotemporal variability should be different. This was analyzed using recurrence quantification analysis. Autocorrelation signals were estimated from the unthresholded recurrence plot, calculated with a properly processed ECG to remove variability related to external sources (noise, respiratory motion, T wave overlap). Simple features were considered from the autocorre-lation that attempts to describe the atrial activity in terms of range of recurrence and periodicity. Linear classification using support vector machines and logistic regression both allowed good classification performance (max accuracy 0.8 for both). Feature selection showed that right and left AFL have significantly different cycle lengths (right vs. left: 230.63 ms vs. 206.50 ms, p < 0.01).","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"21 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78999826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-Feature Probabilistic Detector Applied to Apnea/Hypopnea Monitoring 多特征概率检测器在呼吸暂停/低呼吸监测中的应用
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005766
D. Ge, Alfredo I. Hernández
{"title":"Multi-Feature Probabilistic Detector Applied to Apnea/Hypopnea Monitoring","authors":"D. Ge, Alfredo I. Hernández","doi":"10.23919/CinC49843.2019.9005766","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005766","url":null,"abstract":"Robust, real-time apnea and hypopnea detection for monitoring patients suffering from sleep apnea syndrome (SAS) still represents an open problem due to the effect of noise artifacts, the complexity of respiratory patterns and inter-subject variability. We propose in this study the application of an original multi-feature probabilistic detector (MFPD) for SAS event detection during long-term monitoring recordings on three SAS patients. The nasal pressure signal is used as input to derive a set of respiratory features (variance, peak-to-peak amplitude and total respiration cycle) which are statistically characterized during time and used to provide a mono-feature detection probability in realtime. A centralized fusion approach based on the Kullback-Leibler divergence (KLD), optimally combines these mono-feature distributions in order to produce a final detection. While the optimal feature set selection lies beyond the scope of our study, we illustrate the ability to adapt each feature’s weight dynamically to make centralized fusion decisions. The method can be directly applied to data acquired from multiple sensors as long as features are synchronized. Our proposed fusion method achieves a very high sensitivity (94%) as compared with reference thresholding based methods in the literature.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"67 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75435560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Signature-Based Model for Early Detection of Sepsis From Electronic Health Records in the Intensive Care Unit 基于签名的重症监护病房电子健康记录败血症早期检测模型
2019 Computing in Cardiology (CinC) Pub Date : 2019-09-01 DOI: 10.23919/CinC49843.2019.9005805
James Morrill, A. Kormilitzin, A. Nevado-Holgado, S. Swaminathan, Sam, Howison, Terry Lyons
{"title":"The Signature-Based Model for Early Detection of Sepsis From Electronic Health Records in the Intensive Care Unit","authors":"James Morrill, A. Kormilitzin, A. Nevado-Holgado, S. Swaminathan, Sam, Howison, Terry Lyons","doi":"10.23919/CinC49843.2019.9005805","DOIUrl":"https://doi.org/10.23919/CinC49843.2019.9005805","url":null,"abstract":"Optimal feature selection leads to enhanced efficiency and accuracy when developing both supervised and unsupervised machine-learning models. In this work, a new signature-based regression model is proposed to automatically identify a patient's risk of sepsis based on physiological data streams and to make a positive or negative prediction ofsepsis for every time interval since admission to the intensive care unit. The gradient boosting machine algorithm that uses the features at the current time-points and the signature features extracted from the time-series to model the longitudinal effects ofsepsis yields the utility function score of 0.360 (officially ranked 1st, team name: ‘Can I get your Signature?’) on the full test set. The signature method shows a systematic and competitive approach to model sepsis by learning from health data streams.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"9 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75078478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信