The Signature-Based Model for Early Detection of Sepsis From Electronic Health Records in the Intensive Care Unit

James Morrill, A. Kormilitzin, A. Nevado-Holgado, S. Swaminathan, Sam, Howison, Terry Lyons
{"title":"The Signature-Based Model for Early Detection of Sepsis From Electronic Health Records in the Intensive Care Unit","authors":"James Morrill, A. Kormilitzin, A. Nevado-Holgado, S. Swaminathan, Sam, Howison, Terry Lyons","doi":"10.23919/CinC49843.2019.9005805","DOIUrl":null,"url":null,"abstract":"Optimal feature selection leads to enhanced efficiency and accuracy when developing both supervised and unsupervised machine-learning models. In this work, a new signature-based regression model is proposed to automatically identify a patient's risk of sepsis based on physiological data streams and to make a positive or negative prediction ofsepsis for every time interval since admission to the intensive care unit. The gradient boosting machine algorithm that uses the features at the current time-points and the signature features extracted from the time-series to model the longitudinal effects ofsepsis yields the utility function score of 0.360 (officially ranked 1st, team name: ‘Can I get your Signature?’) on the full test set. The signature method shows a systematic and competitive approach to model sepsis by learning from health data streams.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"9 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Optimal feature selection leads to enhanced efficiency and accuracy when developing both supervised and unsupervised machine-learning models. In this work, a new signature-based regression model is proposed to automatically identify a patient's risk of sepsis based on physiological data streams and to make a positive or negative prediction ofsepsis for every time interval since admission to the intensive care unit. The gradient boosting machine algorithm that uses the features at the current time-points and the signature features extracted from the time-series to model the longitudinal effects ofsepsis yields the utility function score of 0.360 (officially ranked 1st, team name: ‘Can I get your Signature?’) on the full test set. The signature method shows a systematic and competitive approach to model sepsis by learning from health data streams.
基于签名的重症监护病房电子健康记录败血症早期检测模型
在开发有监督和无监督机器学习模型时,最优特征选择可以提高效率和准确性。在这项工作中,提出了一种新的基于特征的回归模型,可以根据生理数据流自动识别患者的脓毒症风险,并在进入重症监护室后的每个时间间隔内对脓毒症进行阳性或阴性预测。梯度增强机算法使用当前时间点的特征和从时间序列中提取的签名特征来模拟脓毒症的纵向影响,在完整的测试集上,效用函数得分为0.360(官方排名第一,团队名称:Can I get your signature ?)签名方法显示了一种通过从健康数据流中学习来模拟败血症的系统和竞争性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信