Impaired Right Atrial Strain is Associated with Decompensated Hemodynamics in Pulmonary Arterial Hypertension

L. Zhong, S. Leng, Xiaodan Zhao, J. Tan, R. Tan
{"title":"Impaired Right Atrial Strain is Associated with Decompensated Hemodynamics in Pulmonary Arterial Hypertension","authors":"L. Zhong, S. Leng, Xiaodan Zhao, J. Tan, R. Tan","doi":"10.23919/CinC49843.2019.9005893","DOIUrl":null,"url":null,"abstract":"The transition of right ventricle (RV) from a compensated to decompensated state contributes to survival in pulmonary arterial hypertension (PAH). However, little is known about the significance of right atrial (RA) dysfunction on disease progression in PAH. In this context, there has been growing interest in markers of RA myocardial dysfunction. Speckle tracking echocardiography, which has been principally used to measure the myocardial strain, is technically challenging in the RA due to the thin atrial wall. Feature tracking cardiovascular magnetic resonance (FT-CMR) software designed to derive myocardial strain from CMR cine images has become available for measurements of atrial longitudinal strain. However, in subjects with relatively vigorous tricuspid annular motion, contour tracking of the RA free wall segment adjacent to the tricuspid valve is adversely affected and becomes the source of errors. In contrast to FT-CMR, we present a rapid assessable strain parameter that requires the automatic tracking of only 3 anatomical reference points – thus avoiding the segment contour tracking near the insertion of the anterior leaflet into the tricuspid annulus.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"24 1","pages":"Page 1-Page 2"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transition of right ventricle (RV) from a compensated to decompensated state contributes to survival in pulmonary arterial hypertension (PAH). However, little is known about the significance of right atrial (RA) dysfunction on disease progression in PAH. In this context, there has been growing interest in markers of RA myocardial dysfunction. Speckle tracking echocardiography, which has been principally used to measure the myocardial strain, is technically challenging in the RA due to the thin atrial wall. Feature tracking cardiovascular magnetic resonance (FT-CMR) software designed to derive myocardial strain from CMR cine images has become available for measurements of atrial longitudinal strain. However, in subjects with relatively vigorous tricuspid annular motion, contour tracking of the RA free wall segment adjacent to the tricuspid valve is adversely affected and becomes the source of errors. In contrast to FT-CMR, we present a rapid assessable strain parameter that requires the automatic tracking of only 3 anatomical reference points – thus avoiding the segment contour tracking near the insertion of the anterior leaflet into the tricuspid annulus.
肺动脉高压患者右心房应变受损与失代偿性血流动力学相关
右心室(RV)从代偿状态到失代偿状态的转变有助于肺动脉高压(PAH)患者的生存。然而,关于右心房(RA)功能障碍对PAH疾病进展的意义知之甚少。在此背景下,人们对类风湿关节炎心肌功能障碍的标志物越来越感兴趣。斑点跟踪超声心动图主要用于测量心肌应变,由于房壁薄,在RA中具有技术挑战性。特征跟踪心血管磁共振(FT-CMR)软件设计从CMR电影图像导出心肌应变已成为可用于心房纵向应变的测量。然而,在三尖瓣环形运动相对剧烈的受试者中,邻近三尖瓣的RA游离壁段的轮廓跟踪受到不利影响,成为误差的来源。与FT-CMR相比,我们提出了一种快速可评估的应变参数,只需要自动跟踪3个解剖参考点,从而避免了前小叶插入三尖瓣环附近的节段轮廓跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信