Journal of Solution Chemistry最新文献

筛选
英文 中文
Volumetric and Viscosity Properties for the Dilute Solution of [Bmim][OAc] in NMP and the Solute–Solvent Interaction from 288.15 to 318.15 K NMP 中 [Bmim][OAc]稀释溶液的体积和粘度特性以及 288.15 至 318.15 K 之间的溶液-溶剂相互作用
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-07-08 DOI: 10.1007/s10953-024-01387-3
Hongtao Wang, Haiyun Hou, Mengjiao Zhang, Junru Wang, Zhichao Xu, Renzhong Li, Songtao Liu
{"title":"Volumetric and Viscosity Properties for the Dilute Solution of [Bmim][OAc] in NMP and the Solute–Solvent Interaction from 288.15 to 318.15 K","authors":"Hongtao Wang,&nbsp;Haiyun Hou,&nbsp;Mengjiao Zhang,&nbsp;Junru Wang,&nbsp;Zhichao Xu,&nbsp;Renzhong Li,&nbsp;Songtao Liu","doi":"10.1007/s10953-024-01387-3","DOIUrl":"10.1007/s10953-024-01387-3","url":null,"abstract":"<div><p>The binary system of [Bmim][OAc] (1-butyl-3-methylimidazolium acetate) with NMP (<i>N</i>-methylpyrrolidone) is a potential effective cellulose solvent, and its physicochemical properties and solute–solvent interaction are important to design and understand its application. The physicochemical properties can infer the solute–solvent interaction of a system, especially for an infinite dilution; so, in this work, over the molality range 0.0–2.1 mol·kg<sup>−1</sup> and temperature range 288.15–318.15 K, the density and absolute viscosity for the dilute solution of [Bmim][OAc] in NMP were measured and correlated. The apparent molar volume and the relative viscosity were calculated and correlated by Redlich–Rosenfeld–Meyer equation (including parameters <span>(V_{Phi}^0)</span>, <i>A</i><sub>v</sub>, <i>B</i><sub>v</sub>) and Jones–Dole equation (including parameters <i>D</i>, <i>F</i>), respectively. Then, the structure behavior of [Bmim][OAc] on solution and the [Bmim][OAc]–NMP interaction were discussed based on the parameters <span>(V_{Phi}^0)</span>, <i>A</i><sub>v</sub>, <i>B</i><sub>v</sub>, <i>D</i>, <i>F,</i> and the volume ratio <i>r</i>, limiting apparent molar expansibility <span>(E_{Phi}^0)</span> and the solvation number <i>n</i><sub>s</sub>. The results show that [Bmim][OAc] acts as a structure-maker for the solution, the [Bmim][OAc]–NMP interaction is weaker than the interactions of cation–anion and NMP–NMP, and such effect becomes more and more obvious with increasing temperature. Finally, based on the interactions and the widely accepted solvation hypothesis, the possible better temperature to dissolve cellulose was discussed for the potential cellulose solvent.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1599 - 1616"},"PeriodicalIF":1.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refinement of the Pitzer–Debye–Hückel Equation for Single Asymmetric Aqueous Electrolyte Systems 单不对称水电解质体系的 Pitzer-Debye-Hückel 公式的改进
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-25 DOI: 10.1007/s10953-024-01392-6
Cong-Yu Zhang
{"title":"Refinement of the Pitzer–Debye–Hückel Equation for Single Asymmetric Aqueous Electrolyte Systems","authors":"Cong-Yu Zhang","doi":"10.1007/s10953-024-01392-6","DOIUrl":"10.1007/s10953-024-01392-6","url":null,"abstract":"<div><p>The Pitzer–Debye–Hückel equation (PDH) is widely used as the long-range term in electrolyte local composition models to describe the non-ideality of electrolyte solutions in the low concentration range. However, the PDH equation’s derivation typically involves disregarding the third term of the radial distribution function, which leaves uncertainties regarding its impact on asymmetric systems, especially those with high asymmetry. This paper addresses this issue by introducing a trinomial radial distribution function and re-deriving the PDH equation, aiming to evaluate the efficacy of the modified equation in describing various asymmetric electrolyte systems at low concentrations (0–1 mol·kg<sup>−1</sup>). Initially, the osmotic coefficients of 19 single asymmetric electrolyte systems were fitted using the modified PDH equation (M-PDH). The results demonstrated that the accuracy of the M-PDH equation was significantly higher compared to the original PDH equation, yielding standard deviations (SD) of 0.1812 and 0.4238, respectively. Furthermore, an analysis and recommendation for the distance parameter <i>b</i> were provided. Finally, a comparative analysis was conducted to assess the contributions of the third term of the radial distribution function in contrast to the first two terms to the osmotic coefficients. Overall, this study enhances our understanding of how asymmetry affects the PDH equation in describing the thermodynamic properties of electrolyte systems.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1583 - 1598"},"PeriodicalIF":1.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of Entrainer and Vapour–Liquid Equilibrium Data for Cyclohexene and Cyclohexane Near-Boiling Systems at 101.3 kPa 101.3 kPa 下环己烯和环己烷近沸体系的引流剂选择和汽液平衡数据
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-20 DOI: 10.1007/s10953-024-01397-1
Yujie Zhen, Min Li, Jinshan Wang, Erkang Li, Qichao Wang, Yingmin Yu
{"title":"Selection of Entrainer and Vapour–Liquid Equilibrium Data for Cyclohexene and Cyclohexane Near-Boiling Systems at 101.3 kPa","authors":"Yujie Zhen,&nbsp;Min Li,&nbsp;Jinshan Wang,&nbsp;Erkang Li,&nbsp;Qichao Wang,&nbsp;Yingmin Yu","doi":"10.1007/s10953-024-01397-1","DOIUrl":"10.1007/s10953-024-01397-1","url":null,"abstract":"<div><p>In the production of cyclohexene by benzene hydrogenation, the by-product cyclohexane forms an azeotrope with cyclohexene. For the extraction and distillation of the binary azeotrope (cyclohexene + cyclohexane), the selectivity and relative volatility of 24 different entrainers were compared and the intermolecular interaction forces and interaction energies were analyzed by the DMol3 module of Materials Studio (MS). <i>N</i>, <i>N</i>-dimethylformamide (DMF) was identified as the entrainer, and vapour–liquid equilibrium (VLE) data were measured at atmospheric pressure for the binary system {cyclohexane + cyclohexene} with a temperature range of 354 K to 356 K, the binary system {cyclohexane + DMF} with a temperature range of 354 K to 390 K, and the binary system {cyclohexene + DMF} with a temperature range of 357 K to 421 K. In addition, the thermodynamic consistency of the experimental data was checked using the Wisniak and Van Ness method. The Wilson, NRTL, and UNIQUAC models were used to regress and fit the experimental data to optimize the binary interaction parameters, and the root mean square (<i>RMSD</i>) and average absolute deviation (<i>AAD</i>) values of all models were below 0.01%, indicating that the experimental data provide a basis for the simulation and optimization of the extractive distillation process.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1560 - 1581"},"PeriodicalIF":1.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Short-Chain Alcohols on the Cloudy Development and Thermodynamics of Triton X-100 and Metformin Hydrochloride Drug Mixture 短链醇对 Triton X-100 和盐酸二甲双胍药物混合物混浊发展和热力学的影响
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-19 DOI: 10.1007/s10953-024-01391-7
Sharmin Akhter Maya, Israt Jahan, Javed Masood Khan, Sk. Md. Ali Ahsan, Shahed Rana, Mohammad Majibur Rahman, Md. Anamul Hoque, Md. Abdul Goni, Mohammed Abdullah Khan
{"title":"Impacts of Short-Chain Alcohols on the Cloudy Development and Thermodynamics of Triton X-100 and Metformin Hydrochloride Drug Mixture","authors":"Sharmin Akhter Maya,&nbsp;Israt Jahan,&nbsp;Javed Masood Khan,&nbsp;Sk. Md. Ali Ahsan,&nbsp;Shahed Rana,&nbsp;Mohammad Majibur Rahman,&nbsp;Md. Anamul Hoque,&nbsp;Md. Abdul Goni,&nbsp;Mohammed Abdullah Khan","doi":"10.1007/s10953-024-01391-7","DOIUrl":"10.1007/s10953-024-01391-7","url":null,"abstract":"<div><p>Cloud point (<i>CP</i>) of aqueous solution of metformin hydrochloride (MNH) and triton X-100 (TX-100) was examined in presence of several alcohols (MeOH, EtOH, 1-PrOH, 2-PrOH, and 1-BuOH). The main focal point of this study was to evaluate the cloud development for the combination of TX-100 and MNH, as well as to indicate the mode of how various alcohols influence both the physicochemical parameters and interaction forces of that mixture. The cloud point (<i>CP</i>) measurement technique was chosen because of its broad applicability in both the medical and industrial sectors. As alcohol contents increased, higher <i>CP</i> values of TX-100 and MNH mixture were observed except in aq. 1-BuOH (<i>CP</i> is decreased). In the aqueous alcoholic medium (above 3000 mmol·kg<sup>−1</sup>), the phase separation of TX-100 (92.7 mmol·kg<sup>−1</sup>) and MNH (2 mmol·kg<sup>−1</sup>) mixture showed the subsequent trend: <i>CP</i> (H<sub>2</sub>O + 2-PrOH) ˃ <i>CP</i> (H<sub>2</sub>O + MeOH) &gt; <i>CP</i> (H<sub>2</sub>O + EtOH) ˃ <i>CP</i> (H<sub>2</sub>O + 1-PrOH). It was observed that the depth to which alcohol molecules penetrate micelles is influenced by the length of the alcohol chain. Longer hydrophobic alcohol molecules have the ability to impair more ethylene oxide–water (EO-water) interactions by penetrating deeper into the micelle’s palisade layer. As a result, there is more occurrence of dehydration, which promotes the production of micellar particles as well as lowers the cloud point substantially. The calculated <span>({Delta G}_{c}^{0})</span> values of the TX-100 + MNH mixture in alcohols media are appeared as positive in every scenario examined, proving that the clouding procedure is not spontaneous. The positive <span>({Delta G}_{c}^{0})</span> results might be attributed to the surfactant’s surface layer in forming H-bond via the water molecules. A decrease in the positive <span>({Delta G}_{c}^{0})</span> values is evidenced by a rise in alcohol concentrations. Consequently, there is less non-spontaneity at higher alcohol concentrations. The <span>(+{Delta H}_{c}^{0})</span> (endothermic) and <span>(+{Delta S}_{c}^{0})</span> magnitudes are detected in aq. MeOH, EtOH, and 2-PrOH solutions. However, <span>({Delta H}_{c}^{0})</span> and <span>({Delta S}_{c}^{0})</span> magnitudes are found as positive (endothermic) and negative (exothermic) at lower and higher contents of 1-PrOH solution while the opposite trend in the <span>({Delta H}_{c}^{0})</span> and <span>({Delta S}_{c}^{0})</span> was detected in aq. 1-BuOH solution.</p><h3>Graphical Abstract</h3><p>Possible interactions among TX-100 and metformin hydrochloride in aqueous 1-BuOH media</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1527 - 1543"},"PeriodicalIF":1.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of Levulinic Acid from Aqueous Solution Using Trioctylamine at Different Temperatures 在不同温度下使用三辛胺从水溶液中萃取乙酰丙酸
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-17 DOI: 10.1007/s10953-024-01394-4
Behnaz Asadzadeh, Mohammed Saad, Petri Uusi-Kyyny, Ville Alopaeus
{"title":"Extraction of Levulinic Acid from Aqueous Solution Using Trioctylamine at Different Temperatures","authors":"Behnaz Asadzadeh,&nbsp;Mohammed Saad,&nbsp;Petri Uusi-Kyyny,&nbsp;Ville Alopaeus","doi":"10.1007/s10953-024-01394-4","DOIUrl":"10.1007/s10953-024-01394-4","url":null,"abstract":"<div><p>Levulinic acid (LA), a carboxylic acid with a keto-acid structure, has recently been gaining increasing attention as a promising biorefinery platform chemical due to its potential to be feasible and sustainable. This work focuses on using trioctylamine (TOA) to separate LA from an aqueous solution by liquid–liquid extraction. For that, binodal curves and tie lines were determined at <i>T</i> = (293.15, 313.15, and 333.15) K under atmospheric pressure. The slope of the determined tie lines demonstrates that higher extraction efficiencies are possible with higher acid concentrations. Furthermore, infrared spectroscopy (FT-IR) was applied to better understand the behavior of phase diagrams. This study detected the acid-extractant complex formation between (LA) and (TOA). Finally, the experimental data were successfully correlated with the NRTL model at all the measured temperatures. The obtained parameters were applied using a decanter model.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1544 - 1559"},"PeriodicalIF":1.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-024-01394-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absorption, Desorption, and Mechanism Investigation of Dilute SO2 in the 1,3-Propanediol + Dimethyl Sulfoxide Binary System 1,3 丙二醇 + 二甲亚砜二元体系中稀释二氧化硫的吸收、解吸和机理研究
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-13 DOI: 10.1007/s10953-024-01390-8
Huifang Guo, Ying Zhang, Qiaomin Zhang, Jia Liu, Xiaohong Xie
{"title":"Absorption, Desorption, and Mechanism Investigation of Dilute SO2 in the 1,3-Propanediol + Dimethyl Sulfoxide Binary System","authors":"Huifang Guo,&nbsp;Ying Zhang,&nbsp;Qiaomin Zhang,&nbsp;Jia Liu,&nbsp;Xiaohong Xie","doi":"10.1007/s10953-024-01390-8","DOIUrl":"10.1007/s10953-024-01390-8","url":null,"abstract":"<div><p>In this work, the absorption of sulfur dioxide (SO<sub>2</sub>) was investigated using the 1,3-propanediol (PDO) + dimethyl sulfoxide (DMSO) system, and the gas−liquid equilibrium (GLE) data were analyzed over a temperature range of 298.15–318.15 K (with a temperature gradient of 5 K) at a pressure of 123.15 kPa. By fitting the gas–liquid equilibrium data, it is observed that the process of absorption SO<sub>2</sub> conforms to Henry’s Law. The change in specific entropy, enthalpy, and Gibbs free energies of the SO<sub>2</sub> absorption process was as well calculated. In addition, the capture and regeneration properties of the PDO + DMSO system were investigated under atmospheric pressure, and the results of regeneration experiments demonstrated that 97.3% of SO<sub>2</sub> could be desorbed by heating and bubbling with N<sub>2</sub>. Furthermore, there was no notable reduction in absorption capacity of the absorbent solvents after multiple cycles. Finally, the FTIR spectra and computational information were noted to analyze the interaction between SO<sub>2</sub> and the system. As a result, an intermolecular hydrogen bonding association between PDO, DMSO, and SO<sub>2</sub> can be inferred.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1510 - 1526"},"PeriodicalIF":1.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-024-01390-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141349280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid 水样中痕量六价铬离子的灵敏分光光度测定:基于合成/表征的特定任务离子液体的简单快速均质溶剂/原位溶剂形成微萃取法
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-12 DOI: 10.1007/s10953-024-01384-6
Mehdi Hosseini, Seyyed Mehdi Khoshfetrat
{"title":"Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid","authors":"Mehdi Hosseini,&nbsp;Seyyed Mehdi Khoshfetrat","doi":"10.1007/s10953-024-01384-6","DOIUrl":"10.1007/s10953-024-01384-6","url":null,"abstract":"<div><p>The preconcentration of uranium VI (U(VI)) at trace levels in some real water and wastewater samples and its determination by spectrophotometry using a homogeneous solvent-based microextraction method, specifically in-situ solvent formation microextraction, were investigated. This microextraction method uses a unique task-specific ionic liquid (IL) as the specific complexing agent and/or extracting phase. A pyrrolidinium-based IL modified with (E)-5-(bromomethyl)-2-(pyridin-2-yldiazenyl) phenol as a task-specific IL (E)-1-(3-hydroxy-4-(pyridin-2-yldiazenyl) benzyl)-1-methylpyrrolidinium bromide (TSIL/Br) was successfully synthesized and characterized by <sup>1</sup>HNMR and FTIR analyses. TSIL/Br chelated with U(VI) ions in the aqueous phase to form a hydrophilic [U(VI)-TSIL/Br<sub>2</sub>] complex with high efficiency. It was then converted to a hydrophobic [U(VI)-TSIL/(NTf<sub>2</sub>)<sub>2</sub>] complex through a counter-ion agent, such as bis(trifluoromethanesulfonyl)imide (<span>(text{NTF}_2^-)</span>) for separation from the aqueous solution phase. This process eliminates the need for a separate complexing agent, because TSIL/Br acts simultaneously as both a complexing agent and an extracting solvent. In brief, the conditions of the microextraction process must be optimized for the analysis of real water samples. Under the optimum conditions, a preconcentration factor, detection limit, quantification limit, linear dynamic range, and relative standard deviation of 218, 1.62 ng·mL<sup>−1</sup>, 5.42 ng·mL<sup>−1</sup>, 20.0–450.0 ng·mL<sup>−1</sup>, and 2.47% (<i>n</i> = 10, 20 ng·mL<sup>−1</sup>) were obtained, respectively. Finally, to assess the method’s ability, it was successfully employed to determine the U(VI) ion content in various real water, wastewater and reference material samples.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1443 - 1461"},"PeriodicalIF":1.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Interactional Behavior of a Ternary Solution of (Isoproterenol Hydrochloride + Water + β-Cyclodextrin) Using Viscosity and Conductance Techniques 利用粘度和电导技术探索(盐酸异搏定+水+β-环糊精)三元溶液的相互作用行为
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-12 DOI: 10.1007/s10953-024-01388-2
Vivek Pathania, Ankita Garg
{"title":"Exploring the Interactional Behavior of a Ternary Solution of (Isoproterenol Hydrochloride + Water + β-Cyclodextrin) Using Viscosity and Conductance Techniques","authors":"Vivek Pathania,&nbsp;Ankita Garg","doi":"10.1007/s10953-024-01388-2","DOIUrl":"10.1007/s10953-024-01388-2","url":null,"abstract":"<div><p>In this work, the physiochemical properties of the drug, isoproterenol hydrochloride, were analyzed in the presence of β-cyclodextrin in an aqueous medium to gain a better understanding of the prevailing interactions among solute–solvent systems with the help of viscosity and conductivity studies. From viscosity measurements, the viscosity <span>(B)</span>-coefficient along with its transfer parameter was calculated using the Jones–Dole equation. In addition to this, the activation parameters such as <span>(Delta {mu }_{1}^{text{o}{#}})</span>, <span>(Delta {mu }_{2}^{text{o}{#}})</span>, <span>(Delta {S}_{2}^{text{o}{#}})</span>, and <span>({Delta H}_{2}^{text{o}{#}})</span> were evaluated and discussed to gain a better understanding of the mechanism of viscous flow in terms of transition state theory. Along with this, conductivity studies were performed to investigate the thermodynamics of the ternary system in terms of changes in Gibbs free energy. Also, the delayed critical aggregate concentration of the ternary system supports favourable interaction between the studied drug and β-cyclodextrin molecules.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1492 - 1509"},"PeriodicalIF":1.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biindenylidene-3,10,30-trione: An Interesting Solvatochromic Molecule and Its Applications for Visual pH Detection and DCM Identification 生物亚茚-3,10,30-三酮:一种有趣的溶色分子及其在视觉 pH 值检测和二氯甲烷鉴定中的应用
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-07 DOI: 10.1007/s10953-024-01386-4
Su-qian Cai, Xiao-hua Cai, Ke-feng Zhang
{"title":"Biindenylidene-3,10,30-trione: An Interesting Solvatochromic Molecule and Its Applications for Visual pH Detection and DCM Identification","authors":"Su-qian Cai,&nbsp;Xiao-hua Cai,&nbsp;Ke-feng Zhang","doi":"10.1007/s10953-024-01386-4","DOIUrl":"10.1007/s10953-024-01386-4","url":null,"abstract":"<div><p>The development of highly sensitive and visual analytical methods for monitoring pH change has always attracted great attention due to significant roles in various fields including food, environmental and biological systems. In this paper, a dual-response sensor for pH detection, [1,2']biindenylidene-3,1',3'-trione <b>L,</b> was synthesized from substrate indane-1,3-dione, and its structure was confirmed by <sup>1</sup>H NMR, <sup>13</sup>C NMR, ESI–MS and single crystals. Interestingly, sensor <b>L</b> exhibits solvatochromic properties and visualized color changes at different poplar solutions, and it can show significant changes in fluorescence intensity, UV–Vis absorbance and color at moderate acidic (pH = 3.52–5.03) and strong basic conditions (pH = 13.09–13.27) based on intramolecular proton transfer (IPT) mechanism. These results indicate that <b>L</b> can act as a double functional probe for the analysis and visual detection of pH change under moderate acidic and strong basic conditions in a quite narrow pH range. In addition, <b>L</b> can also selectively identify solvent CH<sub>2</sub>Cl<sub>2</sub> by inducing larger blue-shift in wavelength and increase in fluorescence intensity, which means that it may be used as an indicator for monitoring trace amount of CH<sub>2</sub>Cl<sub>2</sub>. The potent applicantions for sensor <b>L</b> were also investigated and that it could conveniently be made into a series of strips for pH detection was indicated.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 11","pages":"1476 - 1491"},"PeriodicalIF":1.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solubility Measurement, Model Correlation, and Solvent Effect Analysis of Spectinomycin Dihydrochloride Pentahydrate in Three Binary Solvents 盐酸大观霉素五水合物在三种二元溶剂中的溶解度测量、模型相关性和溶剂效应分析
IF 1.4 4区 化学
Journal of Solution Chemistry Pub Date : 2024-06-03 DOI: 10.1007/s10953-024-01385-5
Dechen Wang, Yu Zhou, Chunyan Liu, Ying Bao
{"title":"Solubility Measurement, Model Correlation, and Solvent Effect Analysis of Spectinomycin Dihydrochloride Pentahydrate in Three Binary Solvents","authors":"Dechen Wang,&nbsp;Yu Zhou,&nbsp;Chunyan Liu,&nbsp;Ying Bao","doi":"10.1007/s10953-024-01385-5","DOIUrl":"10.1007/s10953-024-01385-5","url":null,"abstract":"<div><p>The solubility data of spectinomycin dihydrochloride pentahydrate (SDP) in three binary solvents were determined over a temperature range of 278.15–318.15 K by the gravimetric method. Among the selected binary solvents, the solubility of SDP increased with the rise in temperature and initial methanol composition of binary solvents, and the general order of solubility of SDP under the same conditions was: (methanol + ethanol) &gt; (methanol + <i>n-</i>propanol) &gt; (methanol + <i>i-</i>propanol). Subsequently, solubility–temperature models including van’t Hoff equation, <i>λh</i> equation, Yaws equation, and Apelblat equation; solubility–solvent composition models including general single model; solubility–temperature and solvent composition models including NRTL equation and modified Jouyban–Acree model were used to correlate the solubility data. Regarding the application of the NRTL equation in binary solvent systems, the influence of solvent composition on model parameters was first taken into account by introducing a solvent composition correction factor, thereby exhibiting an enhancement in fitting accuracy. To gain deeper insights into the dissolving behavior of SDP, molecular electrostatic potential surface, Hirshfeld surface analysis and the KAT-LSER model were applied to analyze the molecular interactions between SDP molecules and the solvent effects. Meanwhile, entire solubility data in three binary solvent systems at 298.15 K were associated as a function of solvent properties on the basis of KAT-LSER model. The results revealed that SDP primarily acts as hydrogen bond acceptors in solution, and polar interactions between SDP and solvent molecules can play a crucial role in promoting the dissolution of SDP.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 10","pages":"1419 - 1441"},"PeriodicalIF":1.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信