{"title":"Fabrication of MWCNT-nickel MOF modified glassy carbon electrode for voltammetric determination of levofloxacin","authors":"Masoud Fouladgar, Reza Samimi, Zohre Fathy, Parham Hassanpour","doi":"10.1007/s10008-024-06053-8","DOIUrl":"10.1007/s10008-024-06053-8","url":null,"abstract":"<div><p>In this research, the aim is to develop MWCNT@Ni-BTC metal–organic framework–modified glassy carbon electrodes for the preparation of a simple electrochemical method to measure levofloxacin. The composite modifier was synthesized via the one-step solvothermal method. The electrode surface modifiers were characterized using scanning electron microscopy and FT-IR. The concurrent application of these two particles notably enhances levofloxacin oxidation current (3.2 times), facilitating its measurement at trace levels. The oxidation current on the modified electrode was controlled by diffusion, and the diffusion coefficient of levofloxacin was determined to be 1.2 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>. The proposed method had a linear dynamic range from 2.0 to 100.0 µmol L<sup>−1</sup> of levofloxacin and a detection limit of 0.2 µmol L<sup>−1</sup>. The relative standard deviation for measuring 20.0 µmol L<sup>−1</sup> of levofloxacin was obtained at 2.8% (<i>n</i> = 6), and less than a 5% decrease in oxidation current was observed within 15 days. The modified electrodes were successfully utilized for the determination of levofloxacin in urine samples.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"341 - 349"},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo de Mello, Renan Nakamura de Jesus, Artur J. Motheo
{"title":"Assessing Phenonip™ antimicrobial agent degradation through electrochemical processes with DSA® and BDD anodes","authors":"Rodrigo de Mello, Renan Nakamura de Jesus, Artur J. Motheo","doi":"10.1007/s10008-024-06068-1","DOIUrl":"10.1007/s10008-024-06068-1","url":null,"abstract":"<div><p>The growing concern regarding contamination from pharmaceuticals, cosmetics, and personal care products highlights the urgent need to address this significant environmental and public health challenges. Parabens are widely used as preservatives. Its use is already prohibited in Europe and the USA but remains permitted in Brazil. Even at low concentrations, parabens pose risks to human health, the environment, and animals. Ineffective water resource management and the limitations of traditional effluent treatment methods intensify this issue. This study investigated the potential of electrochemical and photo-assisted electrochemical technologies in degrading Phenonip™, an industrial preservative composed of a mixture of parabens and phenoxyethanol. Two types of commercial anodes were employed: boron-doped diamond (BDD) and the Dimensionally Stable Anode (DSA<sup>®</sup>). The efficiency of these processes was assessed in relation to applied current density, with monitoring of organic carbon levels, contaminant concentrations, energy consumption, and pH. As expected, the time required for complete removal of all contaminants from the sample decreased with higher current densities. However, at elevated current densities, a noticeable increase in energy consumption was observed. In the case of the photo-assisted electrochemical system, an interesting trend emerged: energy consumption decreased as current density increased, attributed to the significantly shorter time needed for complete contaminant removal compared to the traditional electrochemical process. Furthermore, a significant shift in the kinetic behavior of these compounds removal was observed once nearly 80% of the parabens were removed, indicating an alteration in the rate-limiting step or reaction mechanism of the degradation process. These results provide valuable insights into the potential applications of these innovative methods in addressing the urgent challenge of removing contaminants from industrial effluents.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 3","pages":"971 - 985"},"PeriodicalIF":2.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andressa de Oliveira Almeida, Rafael Mendes Coelho, Ângelo Rafael Machado, Helen Rodrigues Martins, Arnaldo César Pereira, Fred Luciano Neves Santos, Paola Alejandra Fiorani Celedon, Lucas Franco Ferreira
{"title":"Low-cost immunosensing approach for Chagas disease: exploiting modified pencil graphite electrodes with polymer films","authors":"Andressa de Oliveira Almeida, Rafael Mendes Coelho, Ângelo Rafael Machado, Helen Rodrigues Martins, Arnaldo César Pereira, Fred Luciano Neves Santos, Paola Alejandra Fiorani Celedon, Lucas Franco Ferreira","doi":"10.1007/s10008-024-06069-0","DOIUrl":"10.1007/s10008-024-06069-0","url":null,"abstract":"<div><p>Chagas disease (CD) is an endemic disease in America that affects impoverished communities. It is caused by the protozoan <i>Trypanosoma cruzi</i>, which is transmitted by triatomine insects known as kissing bugs. Considering the treatment effectiveness, early detection of the disease is crucial to control its impact on public health. In this study, we developed a low-cost immunosensor in which pencil graphite electrodes (PGEs) were functionalized by electropolymerization of monomers 2-aminobenzamide (2AB), 4-aminobenzoic acid (4ABA), 4-hydroxybenzoic acid (4HBA), 4-hydroxyphenylacetic acid (4HPA), and 4-aminophenylacetic acid (4APA). Electrochemical and morphological studies confirmed the successful modification of PGEs for all investigated compounds. The bioreceptor IBMP 8.1, a recombinant antigen, was immobilized on each functionalized platform. Electrochemical impedance spectroscopy identified poly(4HPA) as the most effective material for functionalizing PGEs and consequently recognizing the anti-<i>T. cruzi</i> antibodies, leading to their selection for subsequent optimization of the transducer. The use of silver nanoparticles to improve sensitivity was also investigated. The conditions for immobilizing the antigen, blocking the protein, and the dilution and response time of the device were optimized. Cross-reactivity studies with other diseases have demonstrated the high specificity of immunosensors. Reproducibility and repeatability tests showed relative standard deviation values of 7.3% (± 2.4) and 5.6% (± 1.8), respectively, for the 20 sensors. Furthermore, the stability over a three-month period (<i>n</i> = 20) showed a 32% decrease in response at 25 °C and a 12% decrease at 4 °C. These results indicated the potential of PGE/poly(4HPA) for rapid and accurate CD detection.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 3","pages":"935 - 949"},"PeriodicalIF":2.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-standing electrode derived from bacterial cellulose for efficient hydrogen peroxide production","authors":"Shun Zeng, Weiqi Xu, Huiying Chen, Xiao Huang","doi":"10.1007/s10008-024-06066-3","DOIUrl":"10.1007/s10008-024-06066-3","url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production through a two-electron oxygen reduction reaction (ORR) pathway presents a promising alternative to the traditional energy-consumed anthraquinone process. In this work, a low-cost and effective catalyst of carbon fiber (CF) derived from bacterial cellulose is utilized for H<sub>2</sub>O<sub>2</sub> electroproduction. The CF electrode is treated under different atmospheres, and the electrode treated under an inert atmosphere exhibits excellent H<sub>2</sub>O<sub>2</sub> production performance. The inert atmosphere-treated CF electrode delivers a high H<sub>2</sub>O<sub>2</sub> production yield of 2200 mg L<sup>−1</sup> h<sup>−1</sup> with a remarkable faradaic efficiency of 95%. Interestingly, the electrode treated under a reductive atmosphere also shows high H<sub>2</sub>O<sub>2</sub> production rate after cycle test. Physical characterization confirms that the oxygen functional groups and the unique structure contribute to the superior performance of the CF electrode. These results indicate that the H<sub>2</sub>O<sub>2</sub> production performance should be evaluated under practical operating conditions for large-scale. These findings open a new avenue towards the development of low-cost electrocatalysts for H<sub>2</sub>O<sub>2</sub> electrosynthesis, and offer new opportunities for waste biomass utilization.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"333 - 340"},"PeriodicalIF":2.6,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Liu, Haoyu Wang, Zhiyuan Li, Yi He, Shijun Xu, Chenlu Lei, Quangang Chen, Qing Yuan, Yi Sun, Xiangshan Hou
{"title":"Study of wear and corrosion resistance of co-deposited Ni-W–P coatings with AlN particles","authors":"Han Liu, Haoyu Wang, Zhiyuan Li, Yi He, Shijun Xu, Chenlu Lei, Quangang Chen, Qing Yuan, Yi Sun, Xiangshan Hou","doi":"10.1007/s10008-024-06056-5","DOIUrl":"10.1007/s10008-024-06056-5","url":null,"abstract":"<div><p>In this study, high-performance Ni-W–P/AlN composite coatings were fabricated through pulsed electrodeposition. Subsequently, the effect of the introduction of AlN nanoparticles on the properties of Ni-W–P coatings was investigated and further determined the optimum addition of AlN particles. The results indicate that the incorporation of AlN nanoparticles reduces the coating’s grain size and mitigates microcrack defects observable in Ni-W–P coatings. Of significance, a bath concentration of 1.5 g/L AlN yields the coating with the most superior characteristics. Due to the enhancement of the mechanical properties of the coating by AlN, the hardness of the Ni-W–P/AlN composite coating is increased from 360.6 (Ni-W–P coating) to 620.7 HV, and the average coefficient of friction was decreased from 0.601 (Ni-W–P coating) to 0.356. Furthermore, the coating’s corrosion resistance was examined in a 3.5% NaCl solution, which had a 4.93 mg/L dissolved oxygen level, to assess its durability under corrosive conditions. Notably, the charge transfer resistance (<i>R</i><sub>ct</sub>) sees a substantial increase, rising from 2256 Ω·cm<sup>2</sup> (Ni-W–P coating) to 1.88 × 10<sup>4</sup> Ω·cm<sup>2</sup>, while the corrosion current density experiences a decline, dropping from 24.17 (Ni-W–P coating) to 1.78 μA/cm<sup>2</sup>. This study provides a new direction for the development of a high-performance anticorrosive and wear-resistant coating strategy.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"307 - 321"},"PeriodicalIF":2.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
De-xin Liu, Teng-yue Ma, Jin-ling An, Jin-rong Liu, Wei-yan He
{"title":"High-performance P2-type Na0.7Co0.1Fe0.1Mn0.8O2 cathode materials for sodium-ion batteries","authors":"De-xin Liu, Teng-yue Ma, Jin-ling An, Jin-rong Liu, Wei-yan He","doi":"10.1007/s10008-024-06055-6","DOIUrl":"10.1007/s10008-024-06055-6","url":null,"abstract":"<div><p>Sodium-ion batteries are gaining broad application prospects in the field of new energy due to their high energy density, low cost, and good safety. However, the irreversible phase transformation of layered oxides during charge and discharge cycles limits their long-term cycling performance and practicality. This article utilizes the sol–gel method to prepare a stable Na<sub>0.7</sub>MnO<sub>2</sub> (NMO) crystal phase and explores the effects of double doping with Fe and Co on the microstructure and electrochemical properties of Na<sub>0.7</sub>MnO<sub>2</sub>. The XRD pattern indicates that Fe and Co ions were successfully incorporated into the lattice of the Na-Mn–O system, stabilizing the P2 crystal phase and increasing the sodium layer spacing. Na<sub>0.7</sub>Co<sub>0.1</sub>Fe<sub>0.1</sub>Mn<sub>0.8</sub>O<sub>2</sub>(NCFMO) can deliver an initial capacity of 109.78 mAh/g, with an average operating voltage of 3 V, and retains a capacity retention rate of 96.31% after 100 cycles. Moreover, at a current density of 0.2 C and a voltage range of 1.5–4.5 V, the cycle charge–discharge specific capacity reaches 226.08 and 159.3 mAh/g, respectively, demonstrating excellent cycle and rate performance.</p><h3>Graphical abstract</h3><p>The cycle performance of the material Na<sub>0.7</sub>Co<sub>0.1</sub>Fe<sub>0.1</sub>Mn<sub>0.8</sub>O<sub>2</sub> in different voltage ranges is tested in the figure, and it shows excellent performance in the voltage range of 1.5–4.5 V.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"323 - 332"},"PeriodicalIF":2.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced pitting resistance of Al-based coating by synergistic passivation effect from different shapes of Ni/Cr powders","authors":"Binkai Yuan, Liuyan Zhang, Zhaokang Han, Luliang Mo, Yiying Zhang, Gengzhe Shen, Qian Lin, Guibin Tan","doi":"10.1007/s10008-024-06058-3","DOIUrl":"10.1007/s10008-024-06058-3","url":null,"abstract":"<p>Cold-sprayed Al-based coatings are widely used in corrosion protection fields, but they are poor in pitting resistance. In order to enhance the pitting resistance of Al-based coatings, dendritic Ni and irregular Cr powders are co-doped into Al powders to prepare Al-Ni–Cr composite coatings by cold spraying. Their structure, composition, and corrosion behavior are characterized by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic potential polarization, and electrochemical impedance spectroscopy. The results show that the Al-Ni-30Cr coating exhibits the best corrosion resistance with high <i>E</i><sub>pit</sub>, small <i>i</i><sub>corr</sub> and <i>i</i><sub>pass</sub>, large <i>R</i><sub>ct</sub>, and superior self-healing ability. The protective corrosion products rapidly form in the early stage of corrosion, which can effectively fill corrosion pits and intrinsic pores in coatings, preventing further penetration of corrosive media and the continuation of auto-catalytic corrosion reaction of Cl<sup>−</sup> in the pits. The excellent anti-corrosion performance and long service life of the Al-Ni-30Cr coating are attributed to the self-healing ability and the synergistic shielding effect of nickel and chromium.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"275 - 288"},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangshan Hou, Jinxue Song, Shijun Xu, Yi He, Yang Bai, Yi Sun, Han Liu, Qing Yuan, Quangang Chen, Kaijun Wei
{"title":"Zirconium phenylphosphonate reinforced Ni–B composite coatings: comprehensive analysis of enhanced mechanical properties and corrosion resistance","authors":"Xiangshan Hou, Jinxue Song, Shijun Xu, Yi He, Yang Bai, Yi Sun, Han Liu, Qing Yuan, Quangang Chen, Kaijun Wei","doi":"10.1007/s10008-024-06057-4","DOIUrl":"10.1007/s10008-024-06057-4","url":null,"abstract":"<div><p>In this work, pulsed electrodeposition was utilized to successfully create Ni–B/ZrPP composite coatings on N80 steel plates. Investigations were conducted into how zirconium phenylphosphonate (ZrPP) nanosheets affected the mechanical characteristics, corrosion resistance, and surface morphology of Ni–B metal coatings. The results show that the surface of Ni–B/ZrPP nanocomposite coating is dense, and the defects of the original Ni–B coating are improved by ZrPP. In particular, with a flatter wear trajectory and a smaller wear volume, the composite coating containing 1.0 g/L of ZrPP had the maximum microhardness (1043 Hv) and an average COF of 0.350. At this point in time, the composite coating had the biggest total impedance (64,500 Ω⋅cm<sup>2</sup>), the lowest corrosion rate (0.0256 mm/year), the highest corrosion potential (− 0.332 V), the lowest corrosion current density (2.18 µA/cm<sup>2</sup>), and the best corrosion resistance.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"289 - 306"},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria de Almeida Silva, Daniela Martins Fernandes de Oliveira, César Ricardo Teixeira Tarley, Mariana Gava Segatelli
{"title":"Investigation on the performance of phenyl-rich silicon oxycarbide (SiCO) ceramics as electrode material for voltammetric detection of carbendazim","authors":"Maria de Almeida Silva, Daniela Martins Fernandes de Oliveira, César Ricardo Teixeira Tarley, Mariana Gava Segatelli","doi":"10.1007/s10008-024-06052-9","DOIUrl":"https://doi.org/10.1007/s10008-024-06052-9","url":null,"abstract":"<p>This paper demonstrated the feasibility of phenyl-rich oxycarbide (SiCO) ceramics as electrode materials in voltammetric measures of carbendazim using cyclic voltammetry. Ceramics were prepared from pyrolysis of poly(dimethylsiloxane-co-diphenyl-siloxane) divinyl terminated, crosslinked with divinylbenzene, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, and in the absence of crosslinking agent, using argon atmosphere up to 1500 °C during 1, 3, and 5 h. Silicon carbide (SiC) crystallites and graphitic carbon domains were produced in the non-crystalline matrices and the phase crystallization was improved as the annealing time increased, mainly in the presence of organic crosslinker. SiCO-based electrode materials were used as a paste (ceramic and mineral oil in 80:20 wt.% proportion), and carbendazim’s voltammetric behavior was compared to commercial glassy carbon electrode (GCE). The electrochemical performance of ceramic electrodes showed a dependence on both polymer chemistry and annealing time, in which organic crosslinker-derived SiCO at 3h annealing displayed the best voltammetric response for carbendazim when compared to other ceramics and commercial GCE. Larger semiconductive SiC crystallites, better graphitization of residual carbon phase, lower charge transfer resistance and higher porosity developed into ceramics derived from organic crosslinker played a crucial role on electrochemical performance of SiCO materials. Apart from the improved performance for carbendazim detection, the unmodified produced ceramics, and their direct use as electrode materials, bring substantial advantages for the preparation of sensors avoiding time-consuming and skills to properly prepare, as usually observed in the modified electrodes.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"17 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile treatment to eliminate carbon-rich layer in TiO2 nanotube photoanodes","authors":"Ah-yeong Lee, Rin Jung, JeongEun Yoo, Kiyoung Lee","doi":"10.1007/s10008-024-06063-6","DOIUrl":"10.1007/s10008-024-06063-6","url":null,"abstract":"<div><p>TiO<sub>2</sub> nanotubes have been numerously utilized in photoelectrochemical field due to its intrinsic and structural advantages. However, TiO<sub>2</sub> nanotubes anodized in organic electrolyte endemically involve carbon-rich layers inside of nanotubes, frequently interrupting charge transfers and photocatalytic reactions. In this study, we investigated some different treatments of TiO<sub>2</sub> nanotubes to eliminate carbon-rich layers from anodic TiO<sub>2</sub> nanotubes. Firstly, photoelectrochemical properties of TiO<sub>2</sub> with various thickness were addressed, and the TiO<sub>2</sub> nanotubes with 3.65 µm were selected for the further treatments. Subsequently, the morphological properties of TiO<sub>2</sub> were optimized to be utilized as a photoanode through the different treatment methods. In conclusion, the optimal TiO<sub>2</sub> nanotubes treated by mechanical grinding and chemical etching process behaved as an efficient photoanode with enhanced photocurrent of 0.2 mA/cm<sup>2</sup>, IPCE of 59% at 350 nm and lowered charge transfer resistance of 983 Ω.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 4","pages":"1491 - 1498"},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}