Journal of Polymer Research最新文献

筛选
英文 中文
Design of hybrid Bi-Zr Perovskite polymer nanocomposites for multifunctional high-performance electrochemical and photonic applications 设计用于多功能高性能电化学和光子应用的混合铋锆过氧化物聚合物纳米复合材料
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-28 DOI: 10.1007/s10965-024-04179-x
Saravanadevi Kannan, Indhumathi Kamaraj, Jessica Fernando, J. Antony Rajam, Santhosh Kamaraj
{"title":"Design of hybrid Bi-Zr Perovskite polymer nanocomposites for multifunctional high-performance electrochemical and photonic applications","authors":"Saravanadevi Kannan,&nbsp;Indhumathi Kamaraj,&nbsp;Jessica Fernando,&nbsp;J. Antony Rajam,&nbsp;Santhosh Kamaraj","doi":"10.1007/s10965-024-04179-x","DOIUrl":"10.1007/s10965-024-04179-x","url":null,"abstract":"<div><p>The innovation of perovskite-structured materials has revealed remarkable features that make them highly suitable for advanced technology applications. Herein, the exploration of the synthesis of Bi-Zr-O perovskite with a blend of polymer nanocomposites, specifically integrating bismuth zirconate combined with conductive copolymers derived from N-methyl pyrrole and o-anisidine. On utilizing the co-precipitation method Bi-Zr-O perovskite structure has aided to form hybrid polymer nanocomposites as poly-N-methyl pyrrole-BiZrO (PNMPy—BiZrO), poly(o-anisidine)-BiZrO (PoA—BiZrO), and poly(N-methyl pyrrole-co–o-anisidine)-BiZr (PNMPy—PoA—BiZrO) were produced via simultaneous chemical oxidative polymerization. A range of characterization techniques were used in this study. X-ray diffraction confirmed that the perovskite structure of BiZrO was preserved in all samples, and Fourier transform infrared spectroscopy showed that the polymers were successfully integrated into the BiZr matrix. The surface morphologies revealed distinct confirmation of the purity and composition of the materials. The highlight of this research are assessment of blend Bi-Zr-O polymer nanocomposites, emphasizing their potential for advanced optoelectronic and electrochemical applications, particularly in flexible displays with improved transparency and UV-shielding for next-generation electronics.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alginate-cysteine conjugate: antimicrobial hydrogel from natural source 藻酸盐-半胱氨酸共轭物:天然抗菌水凝胶
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-28 DOI: 10.1007/s10965-024-04178-y
Tatiane Araujo Soares, André Henrique Furtado Torres, Bruna Carolina Dorm, André Capaldo Amaral, Tamires de Souza Nossa, Eliane Trovatti
{"title":"Alginate-cysteine conjugate: antimicrobial hydrogel from natural source","authors":"Tatiane Araujo Soares,&nbsp;André Henrique Furtado Torres,&nbsp;Bruna Carolina Dorm,&nbsp;André Capaldo Amaral,&nbsp;Tamires de Souza Nossa,&nbsp;Eliane Trovatti","doi":"10.1007/s10965-024-04178-y","DOIUrl":"10.1007/s10965-024-04178-y","url":null,"abstract":"<p>Microbial infections spreading represents a challenging scenario worldwide, with remarkable demand for attention in food and heath fields. An increase in studies for the development of new biomaterials with the aim of decreasing or avoiding bacterial infections has been arising, and the natural polymers have been the focus of some studies. Alginate is an abundant natural polymer with potential for chemical modifications based on its chemical structure and, to the best of our knowledge, it was not modified for antimicrobial activity. This study aims to prepare a new biomaterial by chemical modification of alginate coupled with the cysteine, aiming to infer intrinsic antimicrobial activity to the resulting material, and also, situ gelation capability by the formation of disulfide bonds. The polymers were characterized by FTIR, NMR, thermal analysis, cross-linking test, rheological analysis, hydrolytic degradation, microbiological test (against <i>E. coli and S. aureus</i>) and cytotoxicity. The results of the chemical characterization, as evidenced by FTIR and NMR, indicated the success of the reaction and the increase in the viscosity of alginate-Cys due to the cross-linking of the material. The results showed no toxicity and demonstrated antimicrobial activity against the studied bacteria, indicating their potential for the development of materials for applications in the confection and coating of medical devices, aiming to decrease or avoid infections.</p>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored and sustainable bio-composite thanks to synergetic interactions of polycaprolactone (PCL) and guar gum derivative 聚己内酯(PCL)和瓜尔胶衍生物的协同作用造就了量身定制的可持续生物复合材料
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-26 DOI: 10.1007/s10965-024-04161-7
Taha El Assimi, El Hassan Boutriouia, Iliass Jalit, Abir Chekroun, Mehdi Khouloud, Redouane Beniazza, Abdellatif El Meziane, Hicham Ben Youcef, Roko Blazic, Elvira Vidovic, Mohammed Lahcini
{"title":"Tailored and sustainable bio-composite thanks to synergetic interactions of polycaprolactone (PCL) and guar gum derivative","authors":"Taha El Assimi,&nbsp;El Hassan Boutriouia,&nbsp;Iliass Jalit,&nbsp;Abir Chekroun,&nbsp;Mehdi Khouloud,&nbsp;Redouane Beniazza,&nbsp;Abdellatif El Meziane,&nbsp;Hicham Ben Youcef,&nbsp;Roko Blazic,&nbsp;Elvira Vidovic,&nbsp;Mohammed Lahcini","doi":"10.1007/s10965-024-04161-7","DOIUrl":"10.1007/s10965-024-04161-7","url":null,"abstract":"<div><p>In this research study, we describe the synthesis of new and tailored bio-composite materials by leveraging the synergistic interaction between polycaprolactone (PCL) and carboxymethyl hydroxypropyl guar gum (CMHPG). The proposed approach involves the <i>in-situ</i> ring opening polymerization (ROP) of ε-caprolactone, enabling the grafting of high molecular weight PCL chains (100 kg.mol<sup>−1</sup>) onto CMHPG using a highly stable tin-based catalyst. The successful covalent association between the hydrophobic PCL chains and the hydrophilic CMHPG polysaccharide was confirmed. In addition, comprehensive structural (FTIR, DLS, contact angle and DRX), thermal (TGA and DSC), and mechanical characterizations were performed to investigate the synergistic effects between PCL and CMHPG. Notably, by precisely controlling the amount of CMHPG filler incorporated during synthesis, we achieved tailored performance in terms of film hydrophobicity and controlled biodegradability kinetics. These findings underscore the significant potential of the developed PCL bio-composites for specialized applications such as coatings, surface engineering, and the production of antifouling or repellent materials.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A temperature, pH, and ion sensitive block copolymer with an unusual phase transition: Monomethoxy polyethylene glycol—block-polyethyleneimine 一种对温度、pH 值和离子敏感的嵌段共聚物,具有不寻常的相变:单甲氧基聚乙二醇-嵌段-聚乙烯亚胺
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-26 DOI: 10.1007/s10965-024-04182-2
Kadriye Özlem Hamaloğlu, Hacim Kosaoğlu, Ali Tuncel, Serdar S. Çelebi
{"title":"A temperature, pH, and ion sensitive block copolymer with an unusual phase transition: Monomethoxy polyethylene glycol—block-polyethyleneimine","authors":"Kadriye Özlem Hamaloğlu,&nbsp;Hacim Kosaoğlu,&nbsp;Ali Tuncel,&nbsp;Serdar S. Çelebi","doi":"10.1007/s10965-024-04182-2","DOIUrl":"10.1007/s10965-024-04182-2","url":null,"abstract":"<div><p>A temperature, pH and ion sensitive, block copolymer, monomethoxypolyethylene glycol (MPEG)–block-polyethyleneimine (PEI) was synthesized by carbodiimide activation. MPEG-PEI block copolymer exhibited a thermally reversible phase transition from insoluble to soluble form with increasing temperature at neutral pH. MPEG-PEI chains are insoluble in the temperature range of 4–20 °C in an aqueous medium containing 3.5 mM phosphate ion. By increasing temperature, homogeneous and transparent solutions including dissolved copolymer are obtained at temperatures higher than 20 °C. The observed thermoresponsive behavior was opposite to that seen with poly(N-isopropylacrylamide). Depending on the phosphate ion concentration, the phase transition temperature for passing from insoluble to soluble form could be also precisely controlled between 4–40 °C. The reversible phase transition behavior of MPEG-PEI copolymer was confirmed by ten consecutive heating–cooling cycles between 4—50 °C. MPEG-PEI copolymer also exhibited another responsivity against pH. More appreciable increase in the average hydrodynamic size with the rising temperature was observed at pH 9.0 with respect to those obtained at pH 5 and 7. Temperature, pH and ion sensitive behavior of MPEG-PEI is documented for the first time. The reversible phase transition of MPEG-PEI is a promising tool which may open novel pathways, particularly for enzyme immobilization and drug release studies.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries 用于电容式去离子和锂硫电池的聚吡咯纳米带衍生纳米结构多孔碳
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-26 DOI: 10.1007/s10965-024-04180-4
Quanqi Zhang, Kanglong Shi, Chuan Sun, Wen Wen, Shuai Han, Qing-Chao Zhao, Yongpeng Li, Zhuyin Sui
{"title":"Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries","authors":"Quanqi Zhang,&nbsp;Kanglong Shi,&nbsp;Chuan Sun,&nbsp;Wen Wen,&nbsp;Shuai Han,&nbsp;Qing-Chao Zhao,&nbsp;Yongpeng Li,&nbsp;Zhuyin Sui","doi":"10.1007/s10965-024-04180-4","DOIUrl":"10.1007/s10965-024-04180-4","url":null,"abstract":"<div><p>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m<sup>2</sup> g<sup>–1</sup>). In a 500 mg L<sup>–1</sup> NaCl solution, it has an electrosorption capacity of 12.9 mg g<sup>–1</sup> at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g<sup>–1</sup> after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxation processes in the oriented polyvinylidene fluoride films with various crystalline phase composition 不同晶相组成的拉伸聚偏氟乙烯薄膜的松弛过程
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-26 DOI: 10.1007/s10965-024-04154-6
Dmitrii Gerasimov, Natalia Nikonorova, Ivan Kuryndin, Viktor Lavrentyev, Sergei Bronnikov
{"title":"Relaxation processes in the oriented polyvinylidene fluoride films with various crystalline phase composition","authors":"Dmitrii Gerasimov,&nbsp;Natalia Nikonorova,&nbsp;Ivan Kuryndin,&nbsp;Viktor Lavrentyev,&nbsp;Sergei Bronnikov","doi":"10.1007/s10965-024-04154-6","DOIUrl":"10.1007/s10965-024-04154-6","url":null,"abstract":"<div><p>Oriented polyvinylidene fluoride (PVDF) films were obtained in multistage process based on melt extrusion of polymer. We investigated the results of the polymorphic α→β crystalline phase transformation in the PVDF films subjected to uniaxial stretching. During uniaxial extension both appearance of a polar piezo active crystalline structure and significant changes in the samples morphology were observed. Variations in the PVDF films morphology, polymorphic composition, and supramolecular structure upon transformation were detected with Fourier transform infrared spectroscopy, wide-angle X-ray scattering, and scanning electron microscopy techniques. Broadband dielectric spectroscopy was used to ascertain a change in molecular mobility of the polymer chains during α→β phase transformation. The relaxation processes, γ-, α<sub>а</sub>-, α<sub>с</sub>-, and interfacial polarization, in both α- and β-phases of PVDF were identified in the dielectric loss spectra and described with either Arrhenius or Vogel-Fulcher-Tammann equations. The analysis of the equations parameters allowed concluding that initiation of a polymorphic α→β transition through uniaxial extension results in hindering the relaxators mobility in the β-phase of PVDF samples, except γ-relaxators. This finding confirms a proposal that γ-relaxators are located in the amorphous part of PVDF. Uniaxial extension resulted in a substantial increase in the interfacial polarization, which can be attributed to the emergence of new interface boundaries.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div><div><p>A higher resolution version of the Graphical abstract is available as Supplementary information</p></div></div></figure></div></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the control of mechanical and electrical properties of 3d printed BTO/PDMS flexible porous composites 关于控制 3d 打印 BTO/PDMS 柔性多孔复合材料机械和电气性能的研究
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-25 DOI: 10.1007/s10965-024-04148-4
Yichen Hao, Jun Wang, Qian Wang, Jimin Chen, Yong Zeng
{"title":"Study on the control of mechanical and electrical properties of 3d printed BTO/PDMS flexible porous composites","authors":"Yichen Hao,&nbsp;Jun Wang,&nbsp;Qian Wang,&nbsp;Jimin Chen,&nbsp;Yong Zeng","doi":"10.1007/s10965-024-04148-4","DOIUrl":"10.1007/s10965-024-04148-4","url":null,"abstract":"<div><p>Flexible piezoelectric functional composite materials have the advantages of strong plasticity and good surface adhesion, and show great potential in smart wearable devices, electronic skin and other applications. However, due to the complexity of traditional preparation process, high molding cost and poor air permeability, its further development is limited. Direct ink writing (DIW) 3D printing technology is a rapid prototyping technology, with higher flexibility, faster manufacturing speed and lower manufacturing costs, is widely used in metal, ceramic and composite material molding. In this work, a ink system with polydimethylsiloxane (PDMS) as binder and barium titanate (BTO) ceramic powder as piezoelectric filler was developed, the printing work of flexible porous BTO/PDMS composite material was completed. DIW dual-nozzle printing technology was applied to realise “electrode-piezoelectric-electrode” integrated flexible porous functional gradient structure composites in this study. The results show that the BTO/PDMS ink has the characteristics of shear thinning. When the nozzle diameter is 0.5 mm, the printing speed is 650 mm/min, and the BTO mass fraction is 80%, the flexible porous piezoelectric composite with high precision and complex structure is printed. By phase analysis of BTO/PDMS, it is found that the sample has the characteristic peak of BTO. The microstructure analysis shows that the surface of the sample has good structural fidelity and there are a few island-like pores in the interior. The mechanical test shows that the maximum tensile strength of the sample is 1.33 MPa, the elastic modulus is 1.72 MPa, the longitudinal piezoelectric coefficient d<sub>33</sub> is 4.37 Pc/N, and the open circuit voltage VOC is 3.17 V. This work demonstrates an attractive method of moulding flexible piezoelectric materials with an “electrode-piezoelectric-electrode” structure, which provides a reference to current 3D printing flexible material fabrication techniques due to its simplicity of operation, time and manufacturing cost savings.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of poly(butylene adipate-L-lactide-butylene terephthalate) 聚(己二酸丁二醇酯-L-内酯-对苯二甲酸丁二醇酯)的合成与表征
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-24 DOI: 10.1007/s10965-024-04172-4
Yang Yu, Wanrong Liu, Qi Yue, Dalong Zhao, Xiaofeng Liu, Xiaofeng He, Bo Wen, Ning Liu, Tiejun Ge
{"title":"Synthesis and characterization of poly(butylene adipate-L-lactide-butylene terephthalate)","authors":"Yang Yu,&nbsp;Wanrong Liu,&nbsp;Qi Yue,&nbsp;Dalong Zhao,&nbsp;Xiaofeng Liu,&nbsp;Xiaofeng He,&nbsp;Bo Wen,&nbsp;Ning Liu,&nbsp;Tiejun Ge","doi":"10.1007/s10965-024-04172-4","DOIUrl":"10.1007/s10965-024-04172-4","url":null,"abstract":"<div><p>Poly(butylene adipate-L-lactide-butylene terephthalate) (PBLAT) was synthesized via a two-step method using terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BDO), and L-lactide (L-LA) as polymerization monomers. The structure and properties of PBLAT affected by the content of L-LA were characterized by FTIR, 1 H-NMR, 13 C-NMR, GPC, XRD, DSC, and TG. The FTIR and NMR analyses confirmed that the structure of PBLAT conformed to the intended molecular design. GPC results showed that the number-average molecular weight (<span>(stackrel{-}{{M}_{n}})</span>) of PBLAT was between 13,026 and 23,246. The contact angle of all samples was less than 70°, demonstrating that the addition of L-LA enhanced the hydrophilicity of samples. DSC results showed that with an increase in L-LA content, the glass transition temperature (<i>T</i><sub>g</sub>) of PBLAT increased gradually, and the crystallinity initially increased before decreasing, which was consistent with the results of XRD. The highest 5% weight loss temperature of PBLAT was 343.0 °C, indicating that PBLAT has good thermal stability.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced thermal stability and mechanical performance of epoxy resin with amine-terminated aromatic amide oligomer: unveiling the ring-opening curing phenomenon 用胺端芳香族酰胺低聚物增强环氧树脂的热稳定性和机械性能:揭示开环固化现象
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-24 DOI: 10.1007/s10965-024-04163-5
M. Tariq Qamar, Ali Bahadur, Shahid Iqbal, Ammar Zidan, Sajid Mahmood, D. Ahmed, Nadia Akram, H. Abid, Muhammad Abdul Qayyum, Nasser S. Awwad, Hala A. Ibrahium, Toheed Akhter
{"title":"Enhanced thermal stability and mechanical performance of epoxy resin with amine-terminated aromatic amide oligomer: unveiling the ring-opening curing phenomenon","authors":"M. Tariq Qamar,&nbsp;Ali Bahadur,&nbsp;Shahid Iqbal,&nbsp;Ammar Zidan,&nbsp;Sajid Mahmood,&nbsp;D. Ahmed,&nbsp;Nadia Akram,&nbsp;H. Abid,&nbsp;Muhammad Abdul Qayyum,&nbsp;Nasser S. Awwad,&nbsp;Hala A. Ibrahium,&nbsp;Toheed Akhter","doi":"10.1007/s10965-024-04163-5","DOIUrl":"10.1007/s10965-024-04163-5","url":null,"abstract":"<p>Amine-terminated aromatic amide oligomer (ATAAO) was used to cure diglycidyl ether of bisphenol A epoxy resin. P-phenylenediamine (PPDA) and isophthaloyl chloride (IPC) underwent a condensation reaction to synthesize the oligomer using dimethyl acetamide (DMAc) as the solvent. The successful synthesis and semi-crystalline nature of oligomer was confirmed using <sup>1</sup>HNMR, FT-IR, and X-ray diffraction, respectively. The curing reaction was carried out by mixing ATAAO and diglycidyl ether of bisphenol A (DGEBA) epoxy resin in DMAc, followed by curing at 363.15 K and 393.15 K for 30, 60, 90 and 120 min, respectively. Moreover, the ring-opening curing phenomenon in epoxy was confirmed by <sup>1</sup>HNMR and FT-IR. XRD analysis revealed the amorphous nature of the cured epoxy. Thermal analysis revealed an increase in thermal stability (553.21 K to 580.32 K) and glass transition temperature (423.21 K to 481.61 K) with increasing curing temperature (363.15 K to 393.15 K) and curing duration (30 min to 120 min). Stress–strain analysis revealed an increase in Young’s modulus (5.93 MPa to 41.09 MPa) and stress at the break (7.79 MPa to 31.92 MPa) of cured epoxy films with changing curing conditions. Moreover, a homogeneous surface of cured epoxy films containing slight bumps and small globular without any phase separation was observed in scanning electron micrographs.</p>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calamus tenuis fiber reinforced epoxy composites: effect of fiber loading on the tensile, structural, crystalline, thermal and morphological characteristics 菖蒲纤维增强环氧树脂复合材料:纤维负载对拉伸、结构、结晶、热和形态特征的影响
IF 2.6 4区 化学
Journal of Polymer Research Pub Date : 2024-10-24 DOI: 10.1007/s10965-024-04162-6
Arup Kar, Dip Saikia, Sivasubramanian Palanisamy, Narayanasamy Pandiarajan
{"title":"Calamus tenuis fiber reinforced epoxy composites: effect of fiber loading on the tensile, structural, crystalline, thermal and morphological characteristics","authors":"Arup Kar,&nbsp;Dip Saikia,&nbsp;Sivasubramanian Palanisamy,&nbsp;Narayanasamy Pandiarajan","doi":"10.1007/s10965-024-04162-6","DOIUrl":"10.1007/s10965-024-04162-6","url":null,"abstract":"<div><p>This study utilized <i>Calamus tenuis</i> fiber as reinforcement in fiber-reinforced polymer composites, focusing on the structural, crystalline, thermal, tensile, and morphological properties of <i>Calamus tenuis</i> fiber-reinforced epoxy composites (CTF/Epoxy composites). The composites were fabricated using the hand lay-up method, incorporating fiber weight fractions ranging from 0 wt% (neat epoxy) to 25 wt%, increasing in 5 wt% increments. FTIR spectroscopy identified the chemical compounds and functional groups, while XRD analysis confirmed that the crystalline structure of the composites remained unchanged with the addition of <i>Calamus tenuis</i> fibers. Thermogravimetric analysis (TGA) revealed that the 10 wt% CTF/Epoxy composite exhibited the highest thermal stability among the tested compositions. Differential Scanning Calorimetry (DSC) analysis indicated an increased glass transition temperature (T<sub>g</sub>) in the 10 wt% CTF/Epoxy composite, further confirming improved thermal stability. Notably, the 10 wt% fiber content led to significant improvements in tensile properties, with tensile strength increasing from 17.5 ± 1.42 MPa to 21.08 ± 1.03 MPa, and Young’s modulus rising from 2.53 ± 0.12 GPa to 2.84 ± 0.09 GPa. Scanning Electron Microscopy (SEM) demonstrated enhanced fiber-epoxy bonding, while Atomic Force Microscopy (AFM) indicated increased roughness with higher fiber loadings. Overall, the 10 wt% CTF/Epoxy composite shows substantial potential for structural and infrastructure applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信