{"title":"Correction: Thermodynamic Modeling of the Bi-Se and Bi-Te Binary Systems","authors":"Jiaqiang Zhou, Jiong Wang, Biao Hu, Dongyu Cui","doi":"10.1007/s11669-025-01182-7","DOIUrl":"10.1007/s11669-025-01182-7","url":null,"abstract":"","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 2","pages":"292 - 292"},"PeriodicalIF":1.5,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhi Liang, Ursula Kattner, Kamal Choudharry, Francesca Tavazza, Carelyn Campbell
{"title":"Correction: Thermodynamic Assessments of Ti-Al, Ti-Fe, and Ti-Al-Fe Systems With Four-Sublattice Description of Ordered Body-Centered Cubic Phase and Density Functional Theory Data","authors":"Zhi Liang, Ursula Kattner, Kamal Choudharry, Francesca Tavazza, Carelyn Campbell","doi":"10.1007/s11669-025-01183-6","DOIUrl":"10.1007/s11669-025-01183-6","url":null,"abstract":"","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 2","pages":"293 - 293"},"PeriodicalIF":1.5,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-025-01183-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boron Diffusion in Cerium Doped Alpha Titanium and Beta Titanium: First-principles Calculation","authors":"Peipei Liu, Qingqing Liu, Xiping Chen, Xuemin Liang","doi":"10.1007/s11669-025-01181-8","DOIUrl":"10.1007/s11669-025-01181-8","url":null,"abstract":"<div><p>The effects of Ce substitution on boron incorporation and the diffusion mechanisms of the <i>α</i>-Ti and <i>β</i>-Ti phases were studied by first-principles calculations. The interstitial formation energy, diffusion pathways, energy barriers, and diffusion coefficients of B in both Ti and Ce-doped Ti were calculated. The results indicate that the stable adsorption sites for individual B atoms in <i>α</i>-Ti are octahedral interstitial sites. In <i>β</i>-Ti, stable adsorption sites are octahedral interstitial and tetrahedral interstitial sites. The observed anisotropy in B diffusion within <i>α</i>-Ti reveals that diffusion is energetically more favorable along [000ī] direction, where the diffusion coefficient significantly exceeds that along [ī2ī0] direction. Furthermore, the diffusion energy barrier for B along the T-T pathway in <i>β</i>-Ti is 0.905 eV, which is lower than the corresponding value for B in α-Ti, indicating that the β phase is more favorable for B diffusion. Ce-doped reduces the energy barrier of B diffusion and enhances the B diffusion coefficient in both <i>α</i>-Ti and <i>β</i>-Ti. The calculated results indicate that Ce doping enhances the diffusion of B and facilitates the formation of boride layer in the Ti substrate, which is in line with the conclusions of experimental observations.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 2","pages":"252 - 266"},"PeriodicalIF":1.5,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhehao Qu, Zhenzhi Liu, Yan Zhao, Genfeng Shang, Wei Feng
{"title":"Correction: Thermodynamic Assessment of the U-Ti-Zr System and Atomic Mobility of its Bcc Phase","authors":"Zhehao Qu, Zhenzhi Liu, Yan Zhao, Genfeng Shang, Wei Feng","doi":"10.1007/s11669-025-01185-4","DOIUrl":"10.1007/s11669-025-01185-4","url":null,"abstract":"","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"59 - 59"},"PeriodicalIF":1.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introducing the JPED John E. Morral Best Paper Award","authors":"","doi":"10.1007/s11669-025-01180-9","DOIUrl":"10.1007/s11669-025-01180-9","url":null,"abstract":"","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"1 - 1"},"PeriodicalIF":1.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhehao Qu, Zhenzhi Liu, Yan Zhao, Genfeng Shang, Wei Feng
{"title":"Thermodynamic Assessment of the U-Ti-Zr System and Atomic Mobility of Its bcc Phase","authors":"Zhehao Qu, Zhenzhi Liu, Yan Zhao, Genfeng Shang, Wei Feng","doi":"10.1007/s11669-025-01173-8","DOIUrl":"10.1007/s11669-025-01173-8","url":null,"abstract":"<div><p>In the present work, the thermodynamic assessment of the U-Ti-Zr ternary system was performed by using the CALPHAD (Calculation of Phase Diagrams) method based on phase diagram data as well as the reliable thermodynamic descriptions of the U-Ti, U-Zr, and Ti-Zr binary systems. The calculated isothermal sections and vertical section of the U-Ti-Zr system are in good agreement with the experimental results. Subsequently, based on the available experimental diffusion data, the atomic mobility parameters of the U-Ti binary system were assessed by means of DICTRA software. The calculated interdiffusion coefficients and composition profiles of the bcc U-Ti alloys are consistent with the experimental data. On this basis, the kinetic database of the bcc U-Ti-Zr alloys was constructed by extrapolation in combination with reliable atomic mobility parameters of the U-Zr and Ti-Zr binary sub-systems from the literature.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"49 - 58"},"PeriodicalIF":1.5,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lydia Benazzouz, Abdelhalim Loucif, Gary Brionne, Chunping Zhang, Paloma Isabel Gallego, Jean-Benoit Lévesque, Naïma Boutarek-Zaourar, Mohammad Jahazi
{"title":"Assessing the Influence of DSC Parameters on Accurate Determination of Liquidus and Solidus Temperatures of a Medium Carbon Low-Alloy Steel","authors":"Lydia Benazzouz, Abdelhalim Loucif, Gary Brionne, Chunping Zhang, Paloma Isabel Gallego, Jean-Benoit Lévesque, Naïma Boutarek-Zaourar, Mohammad Jahazi","doi":"10.1007/s11669-025-01178-3","DOIUrl":"10.1007/s11669-025-01178-3","url":null,"abstract":"<div><p>Differential scanning calorimetry (DSC) is a well-known experimental technique for measuring transformation temperatures such as liquidus and solidus in steels. Precise determination of these temperatures is crucial for accurately setting the solidification model of a large-size casting ingot. Therefore, the objective of this article is to discuss the results obtained with DSC to study the accuracy of determining solidus and liquidus temperatures. In the present study the influences of sample mass, cooling rates and chemical composition were the subject of examination to assess their effects on the variation and reliability of the measured solidus and liquidus for an as-cast steel alloy. The DSC experiments were conducted on two ingot-extracted steel compositions that showed variations, due to macrosegregation. Optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy and microhardness measurements were employed to investigate microstructure evolution. Thermodynamic calculations performed using FactSage<sup>®</sup> software showed a significant difference in comparison with the experimental obtained liquidus and solidus temperatures. A 20 mg mass difference increased the solidification interval by 6 °C. Change in the cooling rate resulted in more influence on the deviation of the liquidus temperature than the solidus. Observations revealed an increase in undercooling with the rise in cooling rate, which resulted in shifting the solidification temperature range to lower temperatures. DSC results showed a mass loss after multiple thermal cycles, resulting in notable differences in the liquidus and solidus temperatures, peak shapes, and amplitudes. The results are discussed in terms of their impact in the optimization of large steel ingot casting.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"119 - 132"},"PeriodicalIF":1.5,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gibbs Energy Modeling of High-Temperature Bornite: Application on Calculation of Phase Equilibria of the Cu-Fe-S System","authors":"Peter Waldner","doi":"10.1007/s11669-025-01172-9","DOIUrl":"10.1007/s11669-025-01172-9","url":null,"abstract":"<div><p>Gibbs energy modeling of high temperature bornite is carried out from liquidus to mediate temperatures at a total pressure of one bar. A three sublattice approach using the compound energy formalism is developed which is consistent with a recently reported critical assessment and optimization of the Cu-S sulfide digenite. The first comprehensive comparison with experimental phase diagram data can be carried out on the basis of an adequate reproduction of the homogeneity range of high-temperature bornite which emanates from digenite into the Cu-Fe-S phase space with a substantial iron solubility. Ternary heat capacity data at the composition of Cu<sub>5</sub>FeS<sub>4</sub>, considered for the first time for Gibbs energy modeling, provides the basis for a reliable extrapolation to lower temperatures. A recently presented two-sublattice model for high-temperature pyrrhotite is adapted for accordance with its limited but relevant copper solubility. Eleven phase diagram sections of the Cu-Fe-S system – five isopleth and six isothermal sections – are calculated over the total ternary composition range for comparison with experimental data available in the literature. Together with further development of the Cu-Fe-S liquid phase model agreement between calculation and experimental data is achieved in a fair to a very satisfactory manner.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"170 - 185"},"PeriodicalIF":1.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-025-01172-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct Kinetic Monte Carlo Simulations of Interdiffusion","authors":"P. Sowa, R. Kozubski, G. E. Murch, I. V. Belova","doi":"10.1007/s11669-025-01176-5","DOIUrl":"10.1007/s11669-025-01176-5","url":null,"abstract":"<div><p>Kinetic Monte Carlo (KMC) simulations of the diffusion couple experiments were performed with the assumption that the vacancy composition in the system equilibrates much faster than the atomic configuration. Within this approach, the consistent atomistic simulation model with immediate vacancy equilibration mechanism was developed by incorporating a physical model of vacancy sources and sinks into the KMC algorithm. The Semi-Grand Canonical Monte Carlo (SGCMC) algorithm determined equilibrium vacancy composition and configuration in a system and, when implemented with the KMC code, generated on-line vacancy compositions locally equilibrated according to the atomic configuration in the sample. The values of the interdiffusion coefficients were determined by means of the Boltzmann-Matano formalism applied to the simulated composition profiles along the diffusion couple. The simulations also clearly reproduced the Kirkendall effect expected to appear in the simulated systems. Validity and reliability of the approach was assessed by comparing the results with the predictions of the Darken-Manning theory.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"186 - 203"},"PeriodicalIF":1.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}