{"title":"Direct Kinetic Monte Carlo Simulations of Interdiffusion","authors":"P. Sowa, R. Kozubski, G. E. Murch, I. V. Belova","doi":"10.1007/s11669-025-01176-5","DOIUrl":null,"url":null,"abstract":"<div><p>Kinetic Monte Carlo (KMC) simulations of the diffusion couple experiments were performed with the assumption that the vacancy composition in the system equilibrates much faster than the atomic configuration. Within this approach, the consistent atomistic simulation model with immediate vacancy equilibration mechanism was developed by incorporating a physical model of vacancy sources and sinks into the KMC algorithm. The Semi-Grand Canonical Monte Carlo (SGCMC) algorithm determined equilibrium vacancy composition and configuration in a system and, when implemented with the KMC code, generated on-line vacancy compositions locally equilibrated according to the atomic configuration in the sample. The values of the interdiffusion coefficients were determined by means of the Boltzmann-Matano formalism applied to the simulated composition profiles along the diffusion couple. The simulations also clearly reproduced the Kirkendall effect expected to appear in the simulated systems. Validity and reliability of the approach was assessed by comparing the results with the predictions of the Darken-Manning theory.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"186 - 203"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-025-01176-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kinetic Monte Carlo (KMC) simulations of the diffusion couple experiments were performed with the assumption that the vacancy composition in the system equilibrates much faster than the atomic configuration. Within this approach, the consistent atomistic simulation model with immediate vacancy equilibration mechanism was developed by incorporating a physical model of vacancy sources and sinks into the KMC algorithm. The Semi-Grand Canonical Monte Carlo (SGCMC) algorithm determined equilibrium vacancy composition and configuration in a system and, when implemented with the KMC code, generated on-line vacancy compositions locally equilibrated according to the atomic configuration in the sample. The values of the interdiffusion coefficients were determined by means of the Boltzmann-Matano formalism applied to the simulated composition profiles along the diffusion couple. The simulations also clearly reproduced the Kirkendall effect expected to appear in the simulated systems. Validity and reliability of the approach was assessed by comparing the results with the predictions of the Darken-Manning theory.
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.