{"title":"Boron Diffusion in Cerium Doped Alpha Titanium and Beta Titanium: First-principles Calculation","authors":"Peipei Liu, Qingqing Liu, Xiping Chen, Xuemin Liang","doi":"10.1007/s11669-025-01181-8","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of Ce substitution on boron incorporation and the diffusion mechanisms of the <i>α</i>-Ti and <i>β</i>-Ti phases were studied by first-principles calculations. The interstitial formation energy, diffusion pathways, energy barriers, and diffusion coefficients of B in both Ti and Ce-doped Ti were calculated. The results indicate that the stable adsorption sites for individual B atoms in <i>α</i>-Ti are octahedral interstitial sites. In <i>β</i>-Ti, stable adsorption sites are octahedral interstitial and tetrahedral interstitial sites. The observed anisotropy in B diffusion within <i>α</i>-Ti reveals that diffusion is energetically more favorable along [000ī] direction, where the diffusion coefficient significantly exceeds that along [ī2ī0] direction. Furthermore, the diffusion energy barrier for B along the T-T pathway in <i>β</i>-Ti is 0.905 eV, which is lower than the corresponding value for B in α-Ti, indicating that the β phase is more favorable for B diffusion. Ce-doped reduces the energy barrier of B diffusion and enhances the B diffusion coefficient in both <i>α</i>-Ti and <i>β</i>-Ti. The calculated results indicate that Ce doping enhances the diffusion of B and facilitates the formation of boride layer in the Ti substrate, which is in line with the conclusions of experimental observations.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 2","pages":"252 - 266"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-025-01181-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of Ce substitution on boron incorporation and the diffusion mechanisms of the α-Ti and β-Ti phases were studied by first-principles calculations. The interstitial formation energy, diffusion pathways, energy barriers, and diffusion coefficients of B in both Ti and Ce-doped Ti were calculated. The results indicate that the stable adsorption sites for individual B atoms in α-Ti are octahedral interstitial sites. In β-Ti, stable adsorption sites are octahedral interstitial and tetrahedral interstitial sites. The observed anisotropy in B diffusion within α-Ti reveals that diffusion is energetically more favorable along [000ī] direction, where the diffusion coefficient significantly exceeds that along [ī2ī0] direction. Furthermore, the diffusion energy barrier for B along the T-T pathway in β-Ti is 0.905 eV, which is lower than the corresponding value for B in α-Ti, indicating that the β phase is more favorable for B diffusion. Ce-doped reduces the energy barrier of B diffusion and enhances the B diffusion coefficient in both α-Ti and β-Ti. The calculated results indicate that Ce doping enhances the diffusion of B and facilitates the formation of boride layer in the Ti substrate, which is in line with the conclusions of experimental observations.
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.