{"title":"Gibbs Energy Modeling of High-Temperature Bornite: Application on Calculation of Phase Equilibria of the Cu-Fe-S System","authors":"Peter Waldner","doi":"10.1007/s11669-025-01172-9","DOIUrl":null,"url":null,"abstract":"<div><p>Gibbs energy modeling of high temperature bornite is carried out from liquidus to mediate temperatures at a total pressure of one bar. A three sublattice approach using the compound energy formalism is developed which is consistent with a recently reported critical assessment and optimization of the Cu-S sulfide digenite. The first comprehensive comparison with experimental phase diagram data can be carried out on the basis of an adequate reproduction of the homogeneity range of high-temperature bornite which emanates from digenite into the Cu-Fe-S phase space with a substantial iron solubility. Ternary heat capacity data at the composition of Cu<sub>5</sub>FeS<sub>4</sub>, considered for the first time for Gibbs energy modeling, provides the basis for a reliable extrapolation to lower temperatures. A recently presented two-sublattice model for high-temperature pyrrhotite is adapted for accordance with its limited but relevant copper solubility. Eleven phase diagram sections of the Cu-Fe-S system – five isopleth and six isothermal sections – are calculated over the total ternary composition range for comparison with experimental data available in the literature. Together with further development of the Cu-Fe-S liquid phase model agreement between calculation and experimental data is achieved in a fair to a very satisfactory manner.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 1","pages":"170 - 185"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-025-01172-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-025-01172-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gibbs energy modeling of high temperature bornite is carried out from liquidus to mediate temperatures at a total pressure of one bar. A three sublattice approach using the compound energy formalism is developed which is consistent with a recently reported critical assessment and optimization of the Cu-S sulfide digenite. The first comprehensive comparison with experimental phase diagram data can be carried out on the basis of an adequate reproduction of the homogeneity range of high-temperature bornite which emanates from digenite into the Cu-Fe-S phase space with a substantial iron solubility. Ternary heat capacity data at the composition of Cu5FeS4, considered for the first time for Gibbs energy modeling, provides the basis for a reliable extrapolation to lower temperatures. A recently presented two-sublattice model for high-temperature pyrrhotite is adapted for accordance with its limited but relevant copper solubility. Eleven phase diagram sections of the Cu-Fe-S system – five isopleth and six isothermal sections – are calculated over the total ternary composition range for comparison with experimental data available in the literature. Together with further development of the Cu-Fe-S liquid phase model agreement between calculation and experimental data is achieved in a fair to a very satisfactory manner.
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.