Journal of Materials Engineering and Performance最新文献

筛选
英文 中文
Precipitate Structure, Microstructure Evolution Modeling and Characterization in an Aluminum Alloy 7050 Friction Stir Weld 铝合金 7050 摩擦搅拌焊中的沉淀结构、微结构演变建模与表征
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-09 DOI: 10.1007/s11665-024-10039-y
Ralph Bush, Ioan Feier, David Diercks
{"title":"Precipitate Structure, Microstructure Evolution Modeling and Characterization in an Aluminum Alloy 7050 Friction Stir Weld","authors":"Ralph Bush, Ioan Feier, David Diercks","doi":"10.1007/s11665-024-10039-y","DOIUrl":"https://doi.org/10.1007/s11665-024-10039-y","url":null,"abstract":"<p>Novel use of differential scanning calorimetry (DSC), with 1.7 mm specimen spacing intervals across a friction stir weld, coupled with microhardness, electrical conductivity, transmission electron microscopy (TEM), and novel three-dimensional thermal modeling of temperature profiles were used to characterize precipitate structure as a function of position across a friction stir welded and post-weld stabilized aluminum alloy 7050. The results show excellent agreement with predictions of existing FSW microstructural evolution models for 7XXX aluminum alloys. The DSC scans and thermal modeling accurately predicted the locations and peak temperatures at which transitions from 1) slow precipitate dissolution to 2) rapid dissolution, coarsening, and transformation of <i>η</i>′ to <i>η</i> precipitates to 3) increasing <i>η</i> dissolution and matrix supersaturation occur along the weld. These results are correlated to significant changes in the microhardness and electrical conductivity profiles. Following a 12-year period after the initial post-weld stabilization treatment, the closely spaced DSC scans were able to show that the initial stabilization treatment, (a standard T6 heat treatment), had not fully stabilized the weld near the heat affected zone (HAZ) hardness minimum. A 2-step stabilization method is proposed to fully stabilize the material in this region of the weld.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"28 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Improvement of the Mechanical and Corrosion Properties of a 3102 Aluminum Alloy via Ti Addition 通过添加钛同时改善 3102 铝合金的机械性能和腐蚀性能
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-09 DOI: 10.1007/s11665-024-10041-4
Fang Liu, Qi Wang, Wandong Yang, Jing Feng, Yiyou Tu
{"title":"Simultaneous Improvement of the Mechanical and Corrosion Properties of a 3102 Aluminum Alloy via Ti Addition","authors":"Fang Liu, Qi Wang, Wandong Yang, Jing Feng, Yiyou Tu","doi":"10.1007/s11665-024-10041-4","DOIUrl":"https://doi.org/10.1007/s11665-024-10041-4","url":null,"abstract":"<p>The present study investigates the effects of titanium (Ti) addition on the microstructure, mechanical properties, and corrosion resistance of a 3102 aluminum alloy (Al-0.4Mn-0.3Fe-0.05Si, wt.%; the modified alloy is denoted as 3102-Mod aluminum alloy) through electron backscatter diffraction, x-ray photoelectron spectroscopy, and electrochemical tests. Results demonstrate that the introduction of 0.2-wt.% Ti led to considerable grain refinement, reducing the average grain size from 42 to 19 μm and improving the overall mechanical properties of the 3102 alloy. Notably, the corrosion resistance of the alloy was remarkably enhanced. In particular, the corrosion current density and corrosion rate of the 3102-Mod alloy were lower than those of the 3102 alloy. Furthermore, a Nyquist plot revealed a higher corrosion resistance of the 3102-Mod alloy. This improvement in corrosion resistance can be primarily attributed to the formation of a considerably compact passivation film owing to Ti microalloying. Overall, the findings indicate that Ti microalloying is a new strategy for enhancing the corrosion resistance of 3xxx aluminum alloys, thus expanding their application scope in automotive heat exchangers.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"23 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Detonation Frequency on the Linear Reciprocating Wear Behavior of Detonation Sprayed Ni-20%Cr Coatings at Elevated Temperatures 引爆频率对高温下引爆喷涂 Ni-20%Cr 涂层线性往复磨损行为的影响
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-06 DOI: 10.1007/s11665-024-10043-2
Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran
{"title":"The Effect of Detonation Frequency on the Linear Reciprocating Wear Behavior of Detonation Sprayed Ni-20%Cr Coatings at Elevated Temperatures","authors":"Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran","doi":"10.1007/s11665-024-10043-2","DOIUrl":"https://doi.org/10.1007/s11665-024-10043-2","url":null,"abstract":"<p>The study explores the impact of detonation frequency (3 and 6 Hz) on the temperature-dependent linear reciprocating wear behavior of Ni-20%Cr coatings deposited by detonation spraying on a nickel-based superalloy (IN718). Dry sliding experiments were carried out at both ambient (25 °C) and high (420 °C) temperatures, using an alumina (Al<sub>2</sub>O<sub>3</sub>) ball as the counter material and different loads (5, 10, and 20 N). HV<sub>0.2</sub> microhardness indentations were used to test material hardness variations attributed to heat exposure. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) were used to investigate the wear characteristics and mechanisms. Furthermore, surface roughness and profiles of worn surfaces (including track depth, breadth, and wear volume) enabled the calculation of wear rates using confocal optical 3D profilometry. The results showed the 6 Hz Ni-20%Cr coating showed better wear resistance than the 3 Hz coating. However, a higher wear rate and low friction coefficient at 420 °C were observed due to partial oxide particles, which were insufficient to restrict direct ball-to-metal contact. The research delves into wear maps, tribolayer formation, wear mechanisms, and sub-mechanisms.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"8 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Temperature Oxidation, Corrosion, and Wear Resistance of Cr‐xAl Laser Coated on Metal Zr Surface 金属 Zr 表面激光镀层 Cr-xAl 的高温抗氧化、抗腐蚀和抗磨损性能
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-06 DOI: 10.1007/s11665-024-09982-7
Jianguo Cheng, Chaoqun Xia, Bo Yang, Xiaojun Jiang, Hua Zhong, Tianshuo Song, Shuguang Liu, Tai Yang, Qiang Li
{"title":"High-Temperature Oxidation, Corrosion, and Wear Resistance of Cr‐xAl Laser Coated on Metal Zr Surface","authors":"Jianguo Cheng, Chaoqun Xia, Bo Yang, Xiaojun Jiang, Hua Zhong, Tianshuo Song, Shuguang Liu, Tai Yang, Qiang Li","doi":"10.1007/s11665-024-09982-7","DOIUrl":"https://doi.org/10.1007/s11665-024-09982-7","url":null,"abstract":"<p>Zr alloy with laser-melted Cr coatings exhibits excellent resistance to high-temperature oxidation and are widely used in the nuclear industry. To examine the impact of adding Al on the high-temperature oxidation performance, corrosion, and wear resistance of the coatings, Cr-<i>x</i>Al coatings with varying Al contents were applied to the pure Zr surface using laser cladding. Research results show that laser cladding coatings reveal good interdiffusion between the coatings and the substrate. The hardness and thickness of the coatings increase with the increase in Al content, but the quality of the coatings decreases with the increase of Al elements. A comparison of the high-temperature oxidation weight gain curve and morphology of different samples at 800–1100 °C shows that the oxidation weight gain of Cr-<i>x</i>Al coatings is about half of that of the uncoated substrate, exhibiting excellent high-temperature oxidation resistance. Conclusions drawn from friction morphology and volume loss indicate that the wear volume of Cr and Cr<sub>90</sub>Al<sub>10</sub> coatings is approximately 1/5 of the substrate, demonstrating significantly improved wear resistance compared to the substrate.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"7 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Mechanical and Tribological Properties of SiC- and Multi-walled Carbon Nanotube-Reinforced Surface Composites of AA7075-T6 Fabricated via Friction Stir Processing 评估通过摩擦搅拌工艺制造的碳化硅和多壁碳纳米管增强 AA7075-T6 表面复合材料的机械和摩擦学特性
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-06 DOI: 10.1007/s11665-024-10057-w
Amit Kumar, Vineet Kumar
{"title":"Assessment of Mechanical and Tribological Properties of SiC- and Multi-walled Carbon Nanotube-Reinforced Surface Composites of AA7075-T6 Fabricated via Friction Stir Processing","authors":"Amit Kumar, Vineet Kumar","doi":"10.1007/s11665-024-10057-w","DOIUrl":"https://doi.org/10.1007/s11665-024-10057-w","url":null,"abstract":"<p>Friction stir processing (FSP) is an energy-efficient technique that modifies surfaces and has been used to generate surface metal matrix composites (SMMCs). The AA7075-T6-based two different composites were fabricated in this study by reinforcing multi-walled carbon nanotubes, i.e., SMMC1 and silicon carbide, i.e., SMMC2, through FSP. The matrix material, i.e., AA7075 alloy, is widely used in aerospace and automotive industries due to its good strength/weight ratio. Three-pass FSP with tool speeds of 730 rpm and 65 mm/min was used to develop SMMCs with 7% volume of the reinforcement particles (RPs). Uniform dispersion of the RPs was confirmed through electron probe microanalysis. To investigate the microstructure of the composites and base material, electron backscatter diffraction was employed. To compare the effect of RPs, the SMMCs were examined for mechanical properties, i.e., microhardness, Charpy impact, and tensile strength, and tribological properties. Further, the wear tracks were analyzed for wear mechanism using scanning electron microscopy, and energy-dispersive x-ray analysis revealed the main particles on the tracks. Fractography of the Charpy and tensile specimens provided fracture mechanism. Both the composites outperformed the base metal in terms of mechanical properties and resistance to wear. Regarding the measured attributes, SMMC1 was better than SMMC2 with tensile strength of 629 MPa, impact energy of 25 J, hardness of 160 HV and wear weight loss of 10.2 mg.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of High Current Impulses on Element Distribution in Creep-Deformed Single-Crystal Ni-Based Superalloys 大电流脉冲对蠕变变形单晶镍基超合金中元素分布的影响
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-06 DOI: 10.1007/s11665-024-10054-z
Silvia Reschka, Gregory Gerstein, Sebastian Herbst, Alexander Epishin, Hans Jürgen Maier
{"title":"Influence of High Current Impulses on Element Distribution in Creep-Deformed Single-Crystal Ni-Based Superalloys","authors":"Silvia Reschka, Gregory Gerstein, Sebastian Herbst, Alexander Epishin, Hans Jürgen Maier","doi":"10.1007/s11665-024-10054-z","DOIUrl":"https://doi.org/10.1007/s11665-024-10054-z","url":null,"abstract":"<p>Nickel-based superalloys are typically employed for high-temperature applications. One well-known degradation mechanism is the rafting of the <i>γ</i>′-phase. In this study, it was investigated, whether a high current impulse treatment is suitable to induce changes in element distribution that are opposite to those observed during the rafting process. Thus, samples of CMSX-4 were treated with high current impulses up to 4 kA/mm<sup>2</sup>. Energy-dispersive x-ray spectroscopy measurements showed changes in element distribution due to these treatments. The changes in element distribution were observed to become more pronounced with increasing current density and partly counteracted those induced by prior creep. The extent of the compositional changes also depends on the element. Variations in the Al and Ta content showed stronger tendencies than, e.g., Cr, Co and W.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Compressive Mechanical Properties and Microstructure Evolution of 93W-4.9Ni-2.1Fe Heavy Alloy under a Wide Range of Strain Rates 宽应变速率下 93W-4.9Ni-2.1Fe 重合金的压缩力学性能和显微组织演变研究
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-06 DOI: 10.1007/s11665-024-09969-4
Xianghui Li, Haiting Shen, Yang Liu, Yonggang Wang, Zhaoxiu Jiang
{"title":"Investigation of Compressive Mechanical Properties and Microstructure Evolution of 93W-4.9Ni-2.1Fe Heavy Alloy under a Wide Range of Strain Rates","authors":"Xianghui Li, Haiting Shen, Yang Liu, Yonggang Wang, Zhaoxiu Jiang","doi":"10.1007/s11665-024-09969-4","DOIUrl":"https://doi.org/10.1007/s11665-024-09969-4","url":null,"abstract":"<p>The compressive mechanical properties of the 93W-4.9Ni-2.1Fe heavy alloy were investigated across a wide range of strain rates (1.0 × 10<sup>−3</sup>-5.0 × 10<sup>3</sup>/s) using a mechanical test system (MTS810) and a Split Hopkinson Pressure Bar. The microstructure of the axial cross section of the specimens was subsequently analyzed using scanning electron microscopy, energy-dispersive X-ray spectrometry, and electron backscatter diffraction. The results revealed that under dynamic loading, the yield strength of the 93W-4.9Ni-2.1Fe heavy alloy showed increased strain rate sensitivity compared to quasi-static conditions. With increasing strain rate, the circle equivalent diameter of tungsten grains in the alloy continued to decrease, indicating a growing dominance in bearing the load and contributing to the deformation resistance. However, the work hardening capacity was reduced due to thermal softening effects under dynamic loading. Interface debonding between the tungsten grains and the matrix was observed after loading, and cracks initiated from weaker regions within the matrix, subsequently growing and intersecting. This study provides a theoretical basis for a comprehensive understanding of the high strain rate sensitivity and microstructural evolution of the 93W-4.9Ni-2.1Fe heavy alloy across a broad range of strain rates.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Advanced High-Strength Steel Welds: The Role of Regional Pre-heating in the Heat-Affected Zone 优化先进的高强度钢焊缝:热影响区区域预热的作用
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-05 DOI: 10.1007/s11665-024-10038-z
Kemal Aydin, Nizamettin Kahraman
{"title":"Optimizing Advanced High-Strength Steel Welds: The Role of Regional Pre-heating in the Heat-Affected Zone","authors":"Kemal Aydin, Nizamettin Kahraman","doi":"10.1007/s11665-024-10038-z","DOIUrl":"https://doi.org/10.1007/s11665-024-10038-z","url":null,"abstract":"<p>The development of next-generation high-strength steels is crucial for the automotive industry, necessitating advanced joining techniques. This study investigates the joining of STRENX 700 CR and DP 800 steels using resistance spot welding (RSW) with specialized fixtures. Unlike conventional methods, a regional pre-heating treatment was applied exclusively to the heat-affected zone (HAZ) prior to welding. Comparative analyses were performed between pre-heated and non-pre-heated welded joints. The welded joints underwent microstructural analysis, as well as non-destructive and destructive testing. Results revealed that pre-heating led to an expansion of the HAZ and a reduction in hardness. Additionally, there were significant improvements in mechanical properties, including increases in tensile-shear strength, cross-tension strength, and fatigue strength. These findings demonstrate the effectiveness of regional pre-heating in optimizing the mechanical performance of RSW joints, offering valuable insights for the automotive industry's welding applications.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"7 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Flash Welding Parameters on the Microstructure and Mechanical Performance of Dissimilar Steel Welded Joints 闪光焊接参数对异种钢焊接接头微观结构和机械性能的影响
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-05 DOI: 10.1007/s11665-024-09859-9
Xin Jia, Lin Wang, Zhenduo Ma, Zhiwei Yang, Jianping Xu, Junjie Wang
{"title":"The Influence of Flash Welding Parameters on the Microstructure and Mechanical Performance of Dissimilar Steel Welded Joints","authors":"Xin Jia, Lin Wang, Zhenduo Ma, Zhiwei Yang, Jianping Xu, Junjie Wang","doi":"10.1007/s11665-024-09859-9","DOIUrl":"https://doi.org/10.1007/s11665-024-09859-9","url":null,"abstract":"<p>In the present paper, duplex stainless steel was utilized as an insert for welding high manganese steel frog to high-carbon steel rail under three flash welding processes. The effect of the number of flashes and upsetting force on mechanical performance and microstructure of the welded joints was studied. The results showed that the impact energy of the inserts after welding experienced a significant reduction in the 524-6 (with the number of flashes reduced to 6) and 772-8 (with the upsetting force increased to 772 kN) welded joints compared to the 524-8 welded joint (with an upsetting force of 524 kN and 8 flashes). The other mechanical performances of the welded joints under the three states did not differ significantly. No cracks were observed in the transition regions between the high manganese steel and the insert in any of the three welded joints. Nevertheless, notable micro-voids were present in the 524-6 welded joint. The ferrite in the insert of the 524-6 joint was distributed in a horizontal streamline and continuous strip shape. Conversely, in the 524-8 and 772-8 welded joints, the ferrite was distributed in an arch bridge shape. However, the arch amplitude of the ferrite bridge in the insert of the 772-8 welded joint was larger, and the center of the insert was contained a greater number of ferrites. Furthermore, the severe stress concentration in the middle of the insert of the 524-6 and 772-8 welded joints, coupled with the large amount of ferrite in the middle of the insert of the 772-8 welded joint, were the primary reasons for the diminished impact energy of the insert for these two joints.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"160 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of O Phase Spheroidization Behavior in Ti2AlNb Alloy Using High-Throughput Experiments 利用高通量实验研究 Ti2AlNb 合金中 O 相的球化行为
IF 2.3 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-09-05 DOI: 10.1007/s11665-024-10027-2
Yanqi Fu, Tianqi Yao
{"title":"Investigation of O Phase Spheroidization Behavior in Ti2AlNb Alloy Using High-Throughput Experiments","authors":"Yanqi Fu, Tianqi Yao","doi":"10.1007/s11665-024-10027-2","DOIUrl":"https://doi.org/10.1007/s11665-024-10027-2","url":null,"abstract":"<p>This study investigates the spheroidization behavior of the O phase in Ti<sub>2</sub>AlNb alloy during high temperature deformation through a designed high-throughput experimental approach. The results of the high-throughput deformation experiments indicate that temperature, strain, and strain rate influence the spheroidization behavior of the O phase. Specifically, an increase in temperature and strain promotes the spheroidization of the O phase, while the strain rate exhibits the opposite effect. Moreover, the spheroidization mechanisms of this alloy during high-temperature deformation can be identified and primarily involve grain boundary separation mechanism, terminal dissolution mechanism, continuous dynamic recrystallization mechanism, edge spheroidization mechanism, and shear spheroidization mechanism. Furthermore, the analysis of experimental results reveals that the different morphologies of the spheroidized O phase have varying effects on the microscale mechanical response. In the region of large-sized high-density spheroidized O phase, the influence of back stress may extend to the entire B2 phase, thereby enhancing the B2 phase and subjecting the O phase and B2 phase to similar strains. Therefore, a small quantity of O phase is affected by the forward stress. Conversely, in the region of small-sized low-density spheroidized O phase, a small quantity of B2 phase is affected by the back stress, and the majority of the O phase is affected by forward stress. Eventually, the interaction mechanism between O phase and B2 phase during high-temperature deformation is explored for the first time through theoretical analysis.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"12 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信