Violeta Gkika, Younggeun Kim, Andrei Matlashov, Yun Chang Shin, Yannis Semertzidis, Robin Cantor, Chloe Lohmeyer, Nancy Aggarwal, Andrew Geraci
{"title":"Optimization of High-Sensitivity SQUID Gradiometer for ARIADNE at CAPP","authors":"Violeta Gkika, Younggeun Kim, Andrei Matlashov, Yun Chang Shin, Yannis Semertzidis, Robin Cantor, Chloe Lohmeyer, Nancy Aggarwal, Andrew Geraci","doi":"10.1007/s10909-024-03152-8","DOIUrl":"10.1007/s10909-024-03152-8","url":null,"abstract":"<div><p>ARIADNE (Axion Resonant InterAction Detection Experiment) is a table-top experiment that intends to search for QCD axions from exotic spin-dependent interactions mediated by axion between nuclei at sub-mm range. This experiment includes a non-magnetic mass to source the axion field, and a dense ensemble of hyper-polarized <sup>3</sup>He nuclei to detect the axion field with nuclear-magnetic-resonance (NMR)-based method. The expected NMR signal from the interaction could be easily buried in the noise spectrum of the magnetometer, especially in a frequency range (~ 100 Hz) where the interaction signal is supposed to exist. In this work, we report optimization of SQUID gradiometer for ARIADNE including noise spectrum measurement.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Lemziakov, B. Karimi, S. Nakamura, D. S. Lvov, R. Upadhyay, C. D. Satrya, Z.-Y. Chen, D. Subero, Y.-C. Chang, L. B. Wang, J. P. Pekola
{"title":"Applications of Superconductor–Normal Metal Interfaces","authors":"S. A. Lemziakov, B. Karimi, S. Nakamura, D. S. Lvov, R. Upadhyay, C. D. Satrya, Z.-Y. Chen, D. Subero, Y.-C. Chang, L. B. Wang, J. P. Pekola","doi":"10.1007/s10909-024-03144-8","DOIUrl":"10.1007/s10909-024-03144-8","url":null,"abstract":"<div><p>The importance and non-trivial properties of superconductor normal metal interfaces were discovered by Alexander Fyodorovich Andreev more than 60 years ago. Only much later, these hybrids have found wide interest in applications such as thermometry and refrigeration, electrical metrology, and quantum circuit engineering. Here we discuss the central properties of such interfaces and describe some of the most prominent and recent applications of them.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03144-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Rodriguez, O. Gevin, A. Poglitsch, L. Dussopt, V. Revéret, X.-F. Navick, A. Aliane, X. de la Broise, V. Goudon, A. Vandeneynde, C. Delisle, G. Lasfargues, T. Tollet, H. Kaya, A. Demonti
{"title":"Instrument On-chip: All-Silicon Polarimetric Detectors in the Submillimeter Domain","authors":"L. Rodriguez, O. Gevin, A. Poglitsch, L. Dussopt, V. Revéret, X.-F. Navick, A. Aliane, X. de la Broise, V. Goudon, A. Vandeneynde, C. Delisle, G. Lasfargues, T. Tollet, H. Kaya, A. Demonti","doi":"10.1007/s10909-024-03116-y","DOIUrl":"10.1007/s10909-024-03116-y","url":null,"abstract":"<div><p>Characterization of the magnetic fields at different scales in the Universe is a new frontier for submillimeter astronomy. Polarimetric measurements between 50 and 500 µm are the golden path for this research. We develop, in the prospect of space observatories, all-silicon 50 mK bolometer arrays with polarimetric capabilities in the pixel. Here, we present the first results of the new detectors: performances of thermal sensors, optical absorption and polarimetry.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Angloher, S. Banik, G. Benato, A. Bento, A. Bertolini, R. Breier, C. Bucci, J. Burkhart, L. Canonica, A. D’Addabbo, S. Di Lorenzo, L. Einfalt, A. Erb, F. V. Feilitzsch, S. Fichtinger, D. Fuchs, A. Garai, V. M. Ghete, P. Gorla, P. V. Guillaumon, S. Gupta, D. Hauff, M. Ješkovský, J. Jochum, M. Kaznacheeva, A. Kinast, H. Kluck, H. Kraus, S. Kuckuk, A. Langenkämper, M. Mancuso, L. Marini, B. Mauri, L. Meyer, V. Mokina, M. Olmi, T. Ortmann, C. Pagliarone, L. Pattavina, F. Petricca, W. Potzel, P. Povinec, F. Pröbst, F. Pucci, F. Reindl, J. Rothe, K. Schäffner, J. Schieck, S. Schönert, C. Schwertner, M. Stahlberg, L. Stodolsky, C. Strandhagen, R. Strauss, I. Usherov, F. Wagner, M. Willers, V. Zema
{"title":"Detector Development for the CRESST Experiment","authors":"G. Angloher, S. Banik, G. Benato, A. Bento, A. Bertolini, R. Breier, C. Bucci, J. Burkhart, L. Canonica, A. D’Addabbo, S. Di Lorenzo, L. Einfalt, A. Erb, F. V. Feilitzsch, S. Fichtinger, D. Fuchs, A. Garai, V. M. Ghete, P. Gorla, P. V. Guillaumon, S. Gupta, D. Hauff, M. Ješkovský, J. Jochum, M. Kaznacheeva, A. Kinast, H. Kluck, H. Kraus, S. Kuckuk, A. Langenkämper, M. Mancuso, L. Marini, B. Mauri, L. Meyer, V. Mokina, M. Olmi, T. Ortmann, C. Pagliarone, L. Pattavina, F. Petricca, W. Potzel, P. Povinec, F. Pröbst, F. Pucci, F. Reindl, J. Rothe, K. Schäffner, J. Schieck, S. Schönert, C. Schwertner, M. Stahlberg, L. Stodolsky, C. Strandhagen, R. Strauss, I. Usherov, F. Wagner, M. Willers, V. Zema","doi":"10.1007/s10909-024-03154-6","DOIUrl":"10.1007/s10909-024-03154-6","url":null,"abstract":"<div><p>Recently low-mass dark matter direct searches have been hindered by a low-energy background, drastically reducing the physics reach of the experiments. In the CRESST-III experiment, this signal is characterised by a significant increase of events below 200 eV. As the origin of this background is still unknown, it became necessary to develop new detector designs to reach a better understanding of the observations. Within the CRESST collaboration, three new different detector layouts have been developed, and they are presented in this contribution.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03154-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petri J. Heikkinen, Nathan Eng, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Samuli Autti, Richard P. Haley, Mark Hindmarsh, Dmitry E. Zmeev, Jeevak M. Parpia, Andrew Casey, John Saunders
{"title":"Nanofluidic Platform for Studying the First-Order Phase Transitions in Superfluid Helium-3","authors":"Petri J. Heikkinen, Nathan Eng, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Samuli Autti, Richard P. Haley, Mark Hindmarsh, Dmitry E. Zmeev, Jeevak M. Parpia, Andrew Casey, John Saunders","doi":"10.1007/s10909-024-03146-6","DOIUrl":"10.1007/s10909-024-03146-6","url":null,"abstract":"<div><p>The symmetry-breaking first-order phase transition between superfluid phases <span>(^3)</span>He-A and <span>(^3)</span>He-B can be triggered extrinsically by ionising radiation or heterogeneous nucleation arising from the details of the sample cell construction. However, the role of potential homogeneous intrinsic nucleation mechanisms remains elusive. Discovering and resolving the intrinsic processes may have cosmological consequences, since an analogous first-order phase transition, and the production of gravitational waves, has been predicted for the very early stages of the expanding Universe in many extensions of the Standard Model of particle physics. Here we introduce a new approach for probing the phase transition in superfluid <span>(^3)</span>He. The setup consists of a novel stepped-height nanofluidic sample container with close to atomically smooth walls. The <span>(^3)</span>He is confined in five tiny nanofabricated volumes and assayed non-invasively by NMR. Tuning of the state of <span>(^3)</span>He by confinement is used to isolate each of these five volumes so that the phase transitions in them can occur independently and free from any obvious sources of heterogeneous nucleation. The small volumes also ensure that the transitions triggered by ionising radiation are strongly suppressed. Here we present the preliminary measurements using this setup, showing both strong supercooling of <span>(^3)</span>He-A and superheating of <span>(^3)</span>He-B, with stochastic processes dominating the phase transitions between the two. The objective is to study the nucleation as a function of temperature and pressure over the full phase diagram, to both better test the proposed extrinsic mechanisms and seek potential parallel intrinsic mechanisms.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03146-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. L. Kim, H. J. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, M. H. Lee, Y. C. Lee, S. S. Nagorny, V. N. Shlegel, J. So
{"title":"Development of a Dual Cryogenic Detection System for the Forbidden Non-unique (beta)-Decay Spectrum Study","authors":"H. L. Kim, H. J. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, M. H. Lee, Y. C. Lee, S. S. Nagorny, V. N. Shlegel, J. So","doi":"10.1007/s10909-024-03139-5","DOIUrl":"10.1007/s10909-024-03139-5","url":null,"abstract":"<div><p>We present the development of a dual-detector system designed for investigating the spectral shape of forbidden non-unique beta decays. Two PbMoO<span>(_4)</span> scintillating crystals were carefully prepared for heat and light detection at milli-Kelvin (mK) temperatures. Notably, one crystal was synthesized using archaeological lead, while the other was composed of natural modern lead. The significance of employing two crystals lies in their identical dimensions and proximity, resulting in similar environmental background exposure. Their distinct internal radioactivities, particularly associated with <span>(^{210})</span>Pb, introduce a distinguishing factor between the spectra measured in the two detectors. Our detection method includes achieving clear particle identification through the relative amplitudes of light and heat signals for both crystals. This report compares the electron-induced spectra within energy regions both below and above the endpoint of <span>(^{210})</span>Bi beta decay. This comparative study provides valuable insights into an exact measurement of the <span>(^{210})</span>Bi decay spectrum, forbidden non-unique beta decay.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark W. Keller, A. L. Wessels, D. T. Becker, D. A. Bennett, M. H. Carpenter, M. P. Croce, J. D. Gard, J. Imrek, J. A. B. Mates, K. M. Morgan, N. J. Ortiz, D. R. Schmidt, K. A. Schreiber, D. S. Swetz, J. N. Ullom
{"title":"Effects of Stray Magnetic Field on Transition-Edge Sensors in Gamma-Ray Microcalorimeters","authors":"Mark W. Keller, A. L. Wessels, D. T. Becker, D. A. Bennett, M. H. Carpenter, M. P. Croce, J. D. Gard, J. Imrek, J. A. B. Mates, K. M. Morgan, N. J. Ortiz, D. R. Schmidt, K. A. Schreiber, D. S. Swetz, J. N. Ullom","doi":"10.1007/s10909-024-03140-y","DOIUrl":"10.1007/s10909-024-03140-y","url":null,"abstract":"<div><p>Superconducting transition-edge sensors (TESs) used in X-ray and <span>(gamma)</span>-ray microcalorimeters suffer degraded performance if cooled in a magnetic field <i>B</i> sufficient to trap flux in the sensors. We report measurements of <span>(gamma)</span>-ray TESs before and after implementing measures to reduce stray <i>B</i> fields from sources inside and outside the cryostat. These measurements showed a correlation between anomalous features in TES current–voltage (<i>IV</i>) curves and degraded energy resolution. After reducing internal sources of stray <i>B</i> field and improving shielding against external sources, both <i>IV</i> curves and energy resolution improved. Finally, we placed magnetized screws with remnant fields <span>(sim)</span> 10 <span>(upmu textrm{T})</span> near similar <span>(gamma)</span>-ray TESs in a different type of detector package and observed the same effects.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03140-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress Toward Fast Decay Energy Spectroscopy for Actinide Analysis","authors":"Nathan Hines, S. T. P. Boyd, Geon-Bo Kim","doi":"10.1007/s10909-024-03132-y","DOIUrl":"10.1007/s10909-024-03132-y","url":null,"abstract":"<div><p>Decay energy spectroscopy (DES) is an increasingly popular technique for measuring isotopic composition of actinide samples for nuclear safeguards applications. Current approaches for actinide DES utilize milligram-scale external gold absorbers (> 0.1 nJ/K) that are integrated with actinide samples through mechanical kneading and are thermally connected to microcalorimeters using indium or gold wire bonds. This leads to relatively slow sensor rise time and, consequently, limits counting speed to a few counts per second. We are developing faster metallic magnetic calorimeter-based DES by integrating actinide samples with magnetic sensor materials. This reduces signal rise time and enables high counting speed while maintaining the ability to knead the radioactive source with the absorber. We have measured signal rise time of 0.7 μs with a 1.5 mg external gold absorber using this approach. We also demonstrated online DES operation using an Ortec DSPEC 50, a commercially available data acquisition system developed for semiconductor detectors.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohui Yan, Fei Liu, Ran Duan, Xiaoyun Ma, Ruirui Fan, Xiaojing Wu, Yu Wang
{"title":"Readout System for Frequency-Division Multiplexing Superconducting Detector Arrays","authors":"Xiaohui Yan, Fei Liu, Ran Duan, Xiaoyun Ma, Ruirui Fan, Xiaojing Wu, Yu Wang","doi":"10.1007/s10909-024-03153-7","DOIUrl":"10.1007/s10909-024-03153-7","url":null,"abstract":"<div><p>Superconducting detectors have great potential in detecting microwaves and infrared waves due to their high sensitivity and accuracy in observational results. We have proposed and designed a readout system for frequency-division multiplexing superconducting detector arrays, along with corresponding backend processing and control software. The readout system consists of a baseband signal transmission board, a baseband signal receiver board, an intermediate frequency board, and a server. The baseband signal transmission board and the baseband signal receiver board are designed based on Xilinx radio frequency systems-on-chip. The backend processing and control software has been developed using the Browser/Server architecture. In this study, our designed readout system covers a resonator frequency range of 4–6 GHz or 6–8 GHz, with a multiplexing ratio of 1000:1 for each signal line. The corresponding backend processing and control software can implement functionalities such as system startup, data acquisition, real-time data flow display, <i>I</i>–<i>Q</i> sweep, and nonlinear compensation of the readout system. In the recent experiments, we tested the performance of the entire system and provided the test results for the radio frequency loop test and connecting with superconducting detector array. The experimental results showed that our proposed readout system, aided by the backend processing and control software, is capable of multiplexing readout of large-array frequency-division multiplexing resonators and can be applied in various superconducting detector arrays as well. This system lays a solid foundation for future frequency-division multiplexing readout and large-array readout of superconducting detectors.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Perido, P. K. Day, A. D. Beyer, N. F. Cothard, S. Hailey-Dunsheath, H. G. Leduc, B. H. Eom, J. Glenn
{"title":"Parallel-Plate Capacitor Titanium Nitride Kinetic Inductance Detectors for Infrared Astronomy","authors":"J. Perido, P. K. Day, A. D. Beyer, N. F. Cothard, S. Hailey-Dunsheath, H. G. Leduc, B. H. Eom, J. Glenn","doi":"10.1007/s10909-024-03101-5","DOIUrl":"10.1007/s10909-024-03101-5","url":null,"abstract":"<div><p>The Balloon Experiment for Galactic INfrared Science (BEGINS) is a concept for a sub-orbital observatory that will operate from <span>(lambda)</span> = 25 to 250 <span>(upmu)</span>m to characterize dust in the vicinity of high-mass stars. The mission’s sensitivity requirements will be met by utilizing arrays of 1840 lens-coupled, lumped-element kinetic inductance detectors (KIDs) operating at 300 mK. Each KID will consist of a titanium nitride (TiN) parallel strip absorbing inductive section and parallel plate capacitor deposited on a Silicon (Si) substrate. The parallel plate capacitor geometry allows for reduction of the pixel spacing. At the BEGINS focal plane, the detectors require optical NEPs from <span>(2times 10^{-16})</span> to <span>(6times 10^{-17})</span> W/<span>(sqrt{text {Hz}})</span> from 25 to 250 <span>(upmu)</span>m for optical loads ranging from 4 to 10 pW. We present the design, optical performance and quasiparticle lifetime measurements of a prototype BEGINS KID array at 25 <span>(upmu)</span>m when coupled to Fresnel zone plate lenses. For our optical set up and the absorption efficiency of the KIDs, the electrical NEP requirement at 25 <span>(upmu)</span>m is <span>(7.6times 10^{-17})</span> W/<span>(sqrt{text {Hz}})</span> for an absorbed optical power of 0.36 pW. We find that over an average of five resonators the the detectors are photon noise limited down to about 200 fW, with a limiting NEP of about <span>(7.4times 10^{-17})</span> W/<span>(sqrt{text {Hz}})</span>. Future arrays will be coupled to microlens arrays and have higher optical efficiencies.\u0000</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}