Tianle Gao, Ran Li, Liang Hu, Quanfang Hu, Hongmei Wen, Rui Zhou, Peiqiang Yuan, Xiaoling Zhang, Lingjie Huang, Yong Zhuo, Shengyu Xu, Yan Lin, Bin Feng, Lianqiang Che, De Wu, Zhengfeng Fang
{"title":"Probiotic Lactobacillus rhamnosus GG improves insulin sensitivity and offspring survival via modulation of gut microbiota and serum metabolite in a sow model.","authors":"Tianle Gao, Ran Li, Liang Hu, Quanfang Hu, Hongmei Wen, Rui Zhou, Peiqiang Yuan, Xiaoling Zhang, Lingjie Huang, Yong Zhuo, Shengyu Xu, Yan Lin, Bin Feng, Lianqiang Che, De Wu, Zhengfeng Fang","doi":"10.1186/s40104-024-01046-z","DOIUrl":"10.1186/s40104-024-01046-z","url":null,"abstract":"<p><strong>Background: </strong>Sows commonly experience insulin resistance in late gestation and lactation, causing lower feed intake and milk production, which can lead to higher mortality rates in newborn piglets. The probiotic Lactobacillus rhamnosus GG (LGG) is known to improve insulin resistance. However, whether supplementing LGG can improve insulin sensitivity in sows and enhance lactation performance, particularly the early survival of offspring remains unclear. Hence, we explored the effects and mechanisms of supplementing LGG during late gestation and lactation on sow insulin sensitivity, lactation performance, and offspring survival. In total, 20 sows were randomly allocated to an LGG (n = 10) and control group (n = 10).</p><p><strong>Results: </strong>In sows, LGG supplementation significantly improved insulin sensitivity during late gestation and lactation, increased feed intake, milk production and colostrum lactose levels in early lactation, and enhanced newborn piglet survival. Moreover, LGG treatment significantly reshaped the gut microbiota in sows, notably increasing microbiota diversity and enriching the relative abundance of insulin sensitivity-associated probiotics such as Lactobacillus, Bifidobacterium, and Bacteroides. Serum metabolite and amino acid profiling in late-gestation sows also revealed decreased branched-chain amino acid and kynurenine serum levels following LGG supplementation. Further analyses highlighted a correlation between mitigated insulin resistance in late pregnancy and lactation by LGG and gut microbiota reshaping and changes in serum amino acid metabolism. Furthermore, maternal LGG enhanced immunity in newborn piglets, reduced inflammation, and facilitated the establishment of a gut microbiota.</p><p><strong>Conclusions: </strong>We provide the first evidence that LGG mitigates insulin resistance in sows and enhances offspring survival by modulating the gut microbiota and amino acid metabolism.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"89"},"PeriodicalIF":6.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Wang, Shaolei Shi, Md Yousuf Ali Khan, Zhe Zhang, Yi Zhang
{"title":"Improving the accuracy of genomic prediction in dairy cattle using the biologically annotated neural networks framework.","authors":"Xue Wang, Shaolei Shi, Md Yousuf Ali Khan, Zhe Zhang, Yi Zhang","doi":"10.1186/s40104-024-01044-1","DOIUrl":"10.1186/s40104-024-01044-1","url":null,"abstract":"<p><strong>Background: </strong>Biologically annotated neural networks (BANNs) are feedforward Bayesian neural network models that utilize partially connected architectures based on SNP-set annotations. As an interpretable neural network, BANNs model SNP and SNP-set effects in their input and hidden layers, respectively. Furthermore, the weights and connections of the network are regarded as random variables with prior distributions reflecting the manifestation of genetic effects at various genomic scales. However, its application in genomic prediction has yet to be explored.</p><p><strong>Results: </strong>This study extended the BANNs framework to the area of genomic selection and explored the optimal SNP-set partitioning strategies by using dairy cattle datasets. The SNP-sets were partitioned based on two strategies-gene annotations and 100 kb windows, denoted as BANN_gene and BANN_100kb, respectively. The BANNs model was compared with GBLUP, random forest (RF), BayesB and BayesCπ through five replicates of five-fold cross-validation using genotypic and phenotypic data on milk production traits, type traits, and one health trait of 6,558, 6,210 and 5,962 Chinese Holsteins, respectively. Results showed that the BANNs framework achieves higher genomic prediction accuracy compared to GBLUP, RF and Bayesian methods. Specifically, the BANN_100kb demonstrated superior accuracy and the BANN_gene exhibited generally suboptimal accuracy compared to GBLUP, RF, BayesB and BayesCπ across all traits. The average accuracy improvements of BANN_100kb over GBLUP, RF, BayesB and BayesCπ were 4.86%, 3.95%, 3.84% and 1.92%, and the accuracy of BANN_gene was improved by 3.75%, 2.86%, 2.73% and 0.85% compared to GBLUP, RF, BayesB and BayesCπ, respectively across all seven traits. Meanwhile, both BANN_100kb and BANN_gene yielded lower overall mean square error values than GBLUP, RF and Bayesian methods.</p><p><strong>Conclusion: </strong>Our findings demonstrated that the BANNs framework performed better than traditional genomic prediction methods in our tested scenarios, and might serve as a promising alternative approach for genomic prediction in dairy cattle.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"87"},"PeriodicalIF":6.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy E Boston, Feng Wang, Xi Lin, Sung Woo Kim, Vivek Fellner, Mark F Scott, Amanda L Ziegler, Laurianne Van Landeghem, Anthony T Blikslager, Jack Odle
{"title":"Prebiotic galactooligosaccharide improves piglet growth performance and intestinal health associated with alterations of the hindgut microbiota during the peri-weaning period.","authors":"Timothy E Boston, Feng Wang, Xi Lin, Sung Woo Kim, Vivek Fellner, Mark F Scott, Amanda L Ziegler, Laurianne Van Landeghem, Anthony T Blikslager, Jack Odle","doi":"10.1186/s40104-024-01047-y","DOIUrl":"10.1186/s40104-024-01047-y","url":null,"abstract":"<p><strong>Background: </strong>Weaning stress reduces growth performance and health of young pigs due in part to an abrupt change in diets from highly digestible milk to fibrous plant-based feedstuffs. This study investigated whether dietary galactooligosaccharide (GOS), supplemented both pre- and post-weaning, could improve growth performance and intestinal health via alterations in the hindgut microbial community.</p><p><strong>Methods: </strong>Using a 3 × 2 factorial design, during farrowing 288 piglets from 24 litters received either no creep feed (FC), creep without GOS (FG-) or creep with 5% GOS (FG+) followed by a phase 1 nursery diet without (NG-) or with 3.8% GOS (NG+). Pigs were sampled pre- (D22) and post-weaning (D31) to assess intestinal measures.</p><p><strong>Results: </strong>Creep fed pigs grew 19% faster than controls (P < 0.01) prior to weaning, and by the end of the nursery phase (D58), pigs fed GOS pre-farrowing (FG+) were 1.85 kg heavier than controls (P < 0.05). Furthermore, pigs fed GOS in phase 1 of the nursery grew 34% faster (P < 0.04), with greater feed intake and efficiency. Cecal microbial communities clustered distinctly in pre- vs. post-weaned pigs, based on principal coordinate analysis (P < 0.01). No effects of GOS were detected pre-weaning, but gruel creep feeding increased Chao1 α-diversity and altered several genera in the cecal microbiota (P < 0.05). Post-weaning, GOS supplementation increased some genera such as Fusicatenibacter and Collinsella, whereas others decreased such as Campylobacter and Frisingicoccus (P < 0.05). Changes were accompanied by higher molar proportions of butyrate in the cecum of GOS-fed pigs (P < 0.05).</p><p><strong>Conclusions: </strong>Gruel creep feeding effectively improves suckling pig growth regardless of GOS treatment. When supplemented post-weaning, prebiotic GOS improves piglet growth performance associated with changes in hindgut microbial composition.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"88"},"PeriodicalIF":6.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaozong Wei, Bo Pan, Jianpeng Qin, Beijia Cao, Tianyi Lv, Jiangfeng Ye, Ao Ning, Kunlin Du, Xiangyi Chen, Shuqi Zou, Shengqin Zang, Guozhi Yu, Tianzeng Song, Qiuxia Liang, Guangbin Zhou
{"title":"The walnut-derived peptide TW-7 improves mouse parthenogenetic embryo development of vitrified MII oocytes potentially by promoting histone lactylation.","authors":"Yaozong Wei, Bo Pan, Jianpeng Qin, Beijia Cao, Tianyi Lv, Jiangfeng Ye, Ao Ning, Kunlin Du, Xiangyi Chen, Shuqi Zou, Shengqin Zang, Guozhi Yu, Tianzeng Song, Qiuxia Liang, Guangbin Zhou","doi":"10.1186/s40104-024-01045-0","DOIUrl":"10.1186/s40104-024-01045-0","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported.</p><p><strong>Result: </strong>Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 μmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development.</p><p><strong>Conclusions: </strong>Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"86"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengjie Shi, Huan Yuan, Lutong Zhang, Lei Gao, Lili Zhao, Xiangfang Zeng, Shiyan Qiao, Guiyan Chu, Chuanjiang Cai
{"title":"UCHL1 promotes the proliferation of porcine granulosa cells by stabilizing CCNB1.","authors":"Shengjie Shi, Huan Yuan, Lutong Zhang, Lei Gao, Lili Zhao, Xiangfang Zeng, Shiyan Qiao, Guiyan Chu, Chuanjiang Cai","doi":"10.1186/s40104-024-01043-2","DOIUrl":"10.1186/s40104-024-01043-2","url":null,"abstract":"<p><strong>Background: </strong>The proliferation of porcine ovarian granulosa cells (GCs) is essential to follicular development and the ubiquitin-proteasome system is necessary for maintaining cell cycle homeostasis. Previous studies found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) regulates female reproduction, especially in ovarian development. However, the mechanism by which UCHL1 regulates porcine GC proliferation remains unclear.</p><p><strong>Results: </strong>UCHL1 overexpression promoted GC proliferation, and knockdown had the opposite effect. UCHL1 is directly bound to cyclin B1 (CCNB1), prolonging the half-life of CCNB1 and inhibiting its degradation, thereby promoting GC proliferation. What's more, a flavonoid compound-isovitexin improved the enzyme activity of UCHL1 and promoted the proliferation of porcine GCs.</p><p><strong>Conclusions: </strong>UCHL1 promoted the proliferation of porcine GCs by stabilizing CCNB1, and isovitexin enhanced the enzyme activity of UCHL1. These findings reveal the role of UCHL1 and the potential of isovitexin in regulating proliferation and provide insights into identifying molecular markers and nutrients that affect follicle development.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"85"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanchen Liu, Venkata Sesha Reddy Choppa, Milan Kumar Sharma, Hanseo Ko, Janghan Choi, Woo Kyun Kim
{"title":"Effects of methionine supplementation in a reduced protein diet on growth performance, oxidative status, intestinal health, oocyst shedding, and methionine and folate metabolism in broilers under Eimeria challenge.","authors":"Guanchen Liu, Venkata Sesha Reddy Choppa, Milan Kumar Sharma, Hanseo Ko, Janghan Choi, Woo Kyun Kim","doi":"10.1186/s40104-024-01041-4","DOIUrl":"10.1186/s40104-024-01041-4","url":null,"abstract":"<p><strong>Background: </strong>This study investigated effects of different methionine (Met) supplementation levels in a reduced protein diet on growth performance, intestinal health, and different physiological parameters in broilers under Eimeria challenge. A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E. maxima, E. tenella, and E. acervulina, and randomly allocated in a 2 × 5 factorial arrangement. Birds received normal protein diets (20% crude protein, NCP) or reduced protein diets (17% crude protein, LCP), containing 2.8, 4.4, 6.0, 7.6, and 9.2 g/kg of Met.</p><p><strong>Results: </strong>On 6 and 9 days post inoculation (DPI), increasing Met level linearly improved the growth performance (P < 0.05). Total oocyst shedding linearly increased as Met level increased (P < 0.05). Duodenal villus height (VH):crypt depth (CD) in the LCP groups were higher on 6 DPI (P < 0.01) while lower on 9 DPI (P < 0.05) compared to the NCP groups. Jejunal CD and duodenal VH:CD changed quadratically as Met level increased (P < 0.05). On 6 DPI, liver glutathione (GSH) and glutathione disulfide (GSSG) linearly increased as Met level increased (P < 0.05). On 9 DPI, GSSG quadratically increased, whereas GSH:GSSG quadratically decreased as Met levels increased (P < 0.05). The expression of amino acid transporters linearly decreased as Met level increased (P < 0.05). The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased (P < 0.05). The expressions of cytokines were lower in the LCP groups than the NCP groups (P < 0.05). Interaction effects were found for the expression of IL-10 and TNFα on 6 DPI (P < 0.05), where it only changed quadratically in the NCP group as Met level increased. The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI (P < 0.05). The expression of these genes linearly or quadratically decreased as Met level increased (P < 0.05).</p><p><strong>Conclusion: </strong>These results revealed the regulatory roles of Met in different physiological parameters including oxidative status, intestinal health, and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"84"},"PeriodicalIF":6.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucio F M Mota, Diana Giannuzzi, Sara Pegolo, Hugo Toledo-Alvarado, Stefano Schiavon, Luigi Gallo, Erminio Trevisi, Alon Arazi, Gil Katz, Guilherme J M Rosa, Alessio Cecchinato
{"title":"Combining genetic markers, on-farm information and infrared data for the in-line prediction of blood biomarkers of metabolic disorders in Holstein cattle.","authors":"Lucio F M Mota, Diana Giannuzzi, Sara Pegolo, Hugo Toledo-Alvarado, Stefano Schiavon, Luigi Gallo, Erminio Trevisi, Alon Arazi, Gil Katz, Guilherme J M Rosa, Alessio Cecchinato","doi":"10.1186/s40104-024-01042-3","DOIUrl":"10.1186/s40104-024-01042-3","url":null,"abstract":"<p><strong>Background: </strong>Various blood metabolites are known to be useful indicators of health status in dairy cattle, but their routine assessment is time-consuming, expensive, and stressful for the cows at the herd level. Thus, we evaluated the effectiveness of combining in-line near infrared (NIR) milk spectra with on-farm (days in milk [DIM] and parity) and genetic markers for predicting blood metabolites in Holstein cattle. Data were obtained from 388 Holstein cows from a farm with an AfiLab system. NIR spectra, on-farm information, and single nucleotide polymorphisms (SNP) markers were blended to develop calibration equations for blood metabolites using the elastic net (ENet) approach, considering 3 models: (1) Model 1 (M1) including only NIR information, (2) Model 2 (M2) with both NIR and on-farm information, and (3) Model 3 (M3) combining NIR, on-farm and genomic information. Dimension reduction was considered for M3 by preselecting SNP markers from genome-wide association study (GWAS) results.</p><p><strong>Results: </strong>Results indicate that M2 improved the predictive ability by an average of 19% for energy-related metabolites (glucose, cholesterol, NEFA, BHB, urea, and creatinine), 20% for liver function/hepatic damage, 7% for inflammation/innate immunity, 24% for oxidative stress metabolites, and 23% for minerals compared to M1. Meanwhile, M3 further enhanced the predictive ability by 34% for energy-related metabolites, 32% for liver function/hepatic damage, 22% for inflammation/innate immunity, 42.1% for oxidative stress metabolites, and 41% for minerals, compared to M1. We found improved predictive ability of M3 using selected SNP markers from GWAS results using a threshold of > 2.0 by 5% for energy-related metabolites, 9% for liver function/hepatic damage, 8% for inflammation/innate immunity, 22% for oxidative stress metabolites, and 9% for minerals. Slight reductions were observed for phosphorus (2%), ferric-reducing antioxidant power (1%), and glucose (3%). Furthermore, it was found that prediction accuracies are influenced by using more restrictive thresholds (-log<sub>10</sub>(P-value) > 2.5 and 3.0), with a lower increase in the predictive ability.</p><p><strong>Conclusion: </strong>Our results highlighted the potential of combining several sources of information, such as genetic markers, on-farm information, and in-line NIR infrared data improves the predictive ability of blood metabolites in dairy cattle, representing an effective strategy for large-scale in-line health monitoring in commercial herds.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"83"},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyuk Cheol Kwon, Hyun Su Jung, Vahinika Kothuri, Sung Gu Han
{"title":"Current status and challenges for cell-cultured milk technology: a systematic review.","authors":"Hyuk Cheol Kwon, Hyun Su Jung, Vahinika Kothuri, Sung Gu Han","doi":"10.1186/s40104-024-01039-y","DOIUrl":"10.1186/s40104-024-01039-y","url":null,"abstract":"<p><p>Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture. While most cellular agriculture is predominantly centered on the production of cultured meat, there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture. This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production. Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture. Currently, various companies synthesize milk components through precision fermentation technology. Nevertheless, several startup companies are pursuing animal cell-based technology, driven by public concerns regarding genetically modified organisms in precision fermentation technology. Hence, this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components, specifically emphasizing the structural, functional, and productive aspects of mammary epithelial cells, providing new information for industry and academia.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"81"},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Na Yeon Kim, Myoung Ok Kim, Sangsu Shin, Woo-Sung Kwon, Bomi Kim, Joon Yeop Lee, Sang In Lee
{"title":"Effect of atractylenolide III on zearalenone-induced Snail1-mediated epithelial-mesenchymal transition in porcine intestinal epithelium.","authors":"Na Yeon Kim, Myoung Ok Kim, Sangsu Shin, Woo-Sung Kwon, Bomi Kim, Joon Yeop Lee, Sang In Lee","doi":"10.1186/s40104-024-01038-z","DOIUrl":"10.1186/s40104-024-01038-z","url":null,"abstract":"<p><strong>Background: </strong>The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium.</p><p><strong>Results: </strong>Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-β signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT.</p><p><strong>Conclusions: </strong>Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"80"},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinrui Zhang, Tong Xing, Lin Zhang, Liang Zhao, Feng Gao
{"title":"Hypoxia-mediated programmed cell death is involved in the formation of wooden breast in broilers.","authors":"Xinrui Zhang, Tong Xing, Lin Zhang, Liang Zhao, Feng Gao","doi":"10.1186/s40104-024-01036-1","DOIUrl":"10.1186/s40104-024-01036-1","url":null,"abstract":"<p><strong>Background: </strong>Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major (PM) muscle. However, the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated. This study aimed to investigate the potential role of hypoxia-mediated programmed cell death (PCD) in the formation of WB myopathy.</p><p><strong>Results: </strong>Histological examination and biochemical analysis were performed on the PM muscle of the control (CON) and WB groups. A significantly increased thickness of the breast muscle in the top, middle, and bottom portions (P<0.01) was found along with pathological structure damage of myofibers in the WB group. The number of capillaries per fiber in PM muscle, and the levels of pO<sub>2</sub> and sO<sub>2</sub> in the blood, were significantly decreased (P < 0.01), while the levels of pCO<sub>2</sub> and TCO<sub>2</sub> in the blood were significantly increased (P < 0.05), suggesting hypoxic conditions in the PM muscle of the WB group. We further evaluated the PCD-related pathways including autophagy, apoptosis, and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB. The ratio of LC3 II to LC3 I, and the autophagy-related factors HIF-1α, BNIP3, Beclin1, AMPKα, and ULK1 at the mRNA and protein levels, were all significantly upregulated (P < 0.05), showing that autophagy occurred in the PM muscle of the WB group. The apoptotic index, as well as the expressions of Bax, Cytc, caspase 9, and caspase 3, were significantly increased (P < 0.05), whereas Bcl-2 was significantly decreased (P < 0.05) in the WB-affected PM muscle, indicating the occurrence of apoptosis mediated by the mitochondrial pathway. Additionally, the expressions of necroptosis-related factors RIP1, RIP3, and MLKL, as well as NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, were all significantly enhanced (P < 0.05) in the WB-affected PM muscle.</p><p><strong>Conclusions: </strong>The WB myopathy reduces blood supply and induces hypoxia in the PM muscle, which is closely related to the occurrence of PCD including apoptosis, autophagy, and necroptosis within myofibers, and finally leads to abnormal muscle damage and the development of WB in broilers.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"77"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}