{"title":"Lysine 2-hydroxyisobutyrylation levels determined adipogenesis and fat accumulation in adipose tissue in pigs.","authors":"Enfa Yan, Mingyang Tan, Ning Jiao, Linjuan He, Boyang Wan, Xin Zhang, Jingdong Yin","doi":"10.1186/s40104-024-01058-9","DOIUrl":"10.1186/s40104-024-01058-9","url":null,"abstract":"<p><strong>Background: </strong>Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown.</p><p><strong>Results: </strong>In this study, we first analyzed the modification levels of acetylation (Kac), Khib, crotonylation (Kcr) and succinylation (Ksu) of fibro-adipogenic progenitors (FAPs), myogenic precursors (Myo) and mesenchymal stem cells (MSCs) with varied differentiation potential, and found that only Khib modification in FAPs was significantly higher than that in MSCs. Consistently, in parallel with its regulatory enzymes lysine acetyltransferase 5 (KAT5) and histone deacetylase 2 (HDAC2) protein levels, the Khib levels increased quadratically (P < 0.01) during adipogenic differentiation of FAPs. KAT5 knockdown in FAPs inhibited adipogenic differentiation, while HDAC2 knockdown enhanced adipogenic differentiation. We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs (Laiwu pigs) and lean-type pigs (Duroc pigs), respectively. Accordingly, the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese- and lean-type pigs.</p><p><strong>Conclusions: </strong>From the perspective of protein translational modification, we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs, and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"99"},"PeriodicalIF":6.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Hu, Ying Huang, Anjian Li, Qianhui Mi, Kunping Wang, Liang Chen, Zelong Zhao, Qiang Zhang, Xi Bai, Hongbin Pan
{"title":"Effects of different energy levels in low-protein diet on liver lipid metabolism in the late-phase laying hens through the gut-liver axis.","authors":"Hong Hu, Ying Huang, Anjian Li, Qianhui Mi, Kunping Wang, Liang Chen, Zelong Zhao, Qiang Zhang, Xi Bai, Hongbin Pan","doi":"10.1186/s40104-024-01055-y","DOIUrl":"10.1186/s40104-024-01055-y","url":null,"abstract":"<p><strong>Background: </strong>The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens. Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition, but this also decreases the laying performance of hens. This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies. A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group (positive control: CK) or 1 of 3 groups: low-energy and low-protein diet (LL), normal-energy and low-protein diet (NL), and high-energy and low-protein diet (HL) groups. The energy-to-protein ratios of the CK, LL, NL, and HL diets were 0.67, 0.74, 0.77, and 0.80, respectively.</p><p><strong>Results: </strong>Compared with the CK group, egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet. Hens fed LL, NL, and HL diets had significantly higher triglyceride, total cholesterol, acetyl-CoA carboxylase, and fatty acid synthase levels, but significantly lower hepatic lipase levels compared with the CK group. Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation (ACOX1, HADHA, EHHADH, and ACAA1) were downregulated, whereas genes related to fatty acid synthesis (SCD, FASN, and ACACA) were upregulated in LL group compared with the CK group. Comparison of the cecal microbiome showed that in hens fed an LL diet, Lactobacillus and Desulfovibrio were enriched, whereas riboflavin metabolism was suppressed. Cecal metabolites that were most significantly affected by the LL diet included several vitamins, such as riboflavin (vitamin B<sub>2</sub>), pantethine (vitamin B<sub>5</sub> derivative), pyridoxine (vitamin B<sub>6</sub>), and 4-pyridoxic acid.</p><p><strong>Conclusion: </strong>A lipid metabolism disorder due to deficiencies of vitamin B<sub>2</sub> and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet. Based on the present study, we propose that targeting vitamin B<sub>2</sub> and pantethine (vitamin B<sub>5</sub> derivative) might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"98"},"PeriodicalIF":6.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Wang, Bangmin Song, Jianyu Yao, Xingzheng Li, Yan Zhang, Zhonglin Tang, Guoqiang Yi
{"title":"Whole-genome analysis reveals distinct adaptation signatures to diverse environments in Chinese domestic pigs.","authors":"Zhen Wang, Bangmin Song, Jianyu Yao, Xingzheng Li, Yan Zhang, Zhonglin Tang, Guoqiang Yi","doi":"10.1186/s40104-024-01053-0","DOIUrl":"10.1186/s40104-024-01053-0","url":null,"abstract":"<p><strong>Background: </strong>Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones. Nevertheless, the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear.</p><p><strong>Results: </strong>Here, we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical, high-altitude, and frigid regions. Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds. Analysis of selection signals revealed regions under selection for adaptation in tropical (55.5 Mb), high-altitude (43.6 Mb), and frigid (17.72 Mb) regions. The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments, including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments. Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation. These pathways included blood circulation, protein degradation, and inflammation for adaptation to tropical environments; heart and lung development, hypoxia response, and DNA damage repair for high-altitude adaptation; and thermogenesis, cold-induced vasodilation (CIVD), and the cell cycle for adaptation to frigid environments. By examining the chromatin state of the selection signatures, we identified the lung and ileum as two candidate functional tissues for environmental adaptation. Finally, we identified a mutation (chr1: G246,175,129A) in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments.</p><p><strong>Conclusions: </strong>In this study, we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical, high-altitude, and frigid environments. Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"97"},"PeriodicalIF":6.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamil Dobrzyn, Grzegorz Kopij, Marta Kiezun, Ewa Zaobidna, Marlena Gudelska, Barbara Zarzecka, Lukasz Paukszto, Agnieszka Rak, Nina Smolinska, Tadeusz Kaminski
{"title":"Visfatin (NAMPT) affects global gene expression in porcine anterior pituitary cells during the mid-luteal phase of the oestrous cycle.","authors":"Kamil Dobrzyn, Grzegorz Kopij, Marta Kiezun, Ewa Zaobidna, Marlena Gudelska, Barbara Zarzecka, Lukasz Paukszto, Agnieszka Rak, Nina Smolinska, Tadeusz Kaminski","doi":"10.1186/s40104-024-01054-z","DOIUrl":"10.1186/s40104-024-01054-z","url":null,"abstract":"<p><strong>Background: </strong>The pituitary belongs to the most important endocrine glands involved in regulating reproductive functions. The proper functioning of this gland ensures the undisturbed course of the oestrous cycle and affects the female's reproductive potential. It is believed that visfatin, a hormone belonging to the adipokine family, may regulate reproductive functions in response to the female's metabolic state. Herein we verified the hypothesis that suggests a modulatory effect of visfatin on the anterior pituitary transcriptome during the mid-luteal phase of the oestrous cycle.</p><p><strong>Results: </strong>RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 202 genes (95 up-regulated and 107 down-regulated in the presence of visfatin, when compared to the non-treated controls), assigned to 318 gene ontology terms. We revealed changes in the frequency of alternative splicing events (235 cases), as well as long noncoding RNA expression (79 cases) in the presence of the adipokine. The identified genes were associated, among others, with reproductive system development, epithelial cell proliferation, positive regulation of cell development, gland morphogenesis and cell chemotaxis.</p><p><strong>Conclusions: </strong>The obtained results indicate a modulatory influence of visfatin on the regulation of the porcine transcriptome and, in consequence, pituitary physiology during the mid-luteal phase of the oestrous cycle.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"96"},"PeriodicalIF":6.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinzhong Jing, Jiayi Wang, Qian Wu, Shenggang Yin, Zhen He, Jiayong Tang, Gang Jia, Guangmang Liu, Xiaoling Chen, Gang Tian, Jingyi Cai, Bo Kang, Lianqiang Che, Hua Zhao
{"title":"Nano-Se exhibits limited protective effect against heat stress induced poor breast muscle meat quality of broilers compared with other selenium sources.","authors":"Jinzhong Jing, Jiayi Wang, Qian Wu, Shenggang Yin, Zhen He, Jiayong Tang, Gang Jia, Guangmang Liu, Xiaoling Chen, Gang Tian, Jingyi Cai, Bo Kang, Lianqiang Che, Hua Zhao","doi":"10.1186/s40104-024-01051-2","DOIUrl":"10.1186/s40104-024-01051-2","url":null,"abstract":"<p><strong>Background: </strong>At present, heat stress (HS) has become a key factor that impairs broiler breeding industry, which causes growth restriction and poor meat quality of broilers. Selenium (Se) is an excellent antioxidant and plays a unique role in meat quality improvement. Recent years, nano-selenium (NanoSe) has received tremendous attention in livestock production, due to its characteristic and good antibacterial performance in vitro. Here, we developed the heat stressed-broiler model to investigate the protective effects of NanoSe on growth performance and meat quality of broilers and compare whether there are differences with that of other Se sources (Sodium selenite, SS; Selenoyeast, SeY; Selenomethionine, SeMet).</p><p><strong>Results: </strong>HS jeopardized the growth performance and caused poor meat quality of breast muscle in broilers, which were accompanied by lowered antioxidant capacity, increased glycolysis, increased anaerobic metabolism of pyruvate, mitochondrial stress and abnormal mitochondrial tricarboxylic acid (TCA) cycle. All Se sources supplementation exhibited protective effects, which increased the Se concentration and promoted the expression of selenoproteins, improved the mitochondrial homeostasis and the antioxidant capacity, and promoted the TCA cycle and the aerobic metabolism of pyruvate, thus improved the breast muscle meat quality of broilers exposed to HS. However, unlike the other three Se sources, the protective effect of NanoSe on meat quality of heat stressed-broilers was not ideal, which exhibited limited impact on the pH value, drip loss and cooking loss of the breast muscle. Compared with the other Se sources, broilers received NanoSe showed the lowest levels of slow MyHC, the highest levels of fast MyHC and glycogen, the highest mRNA levels of glycolysis-related genes (PFKM and PKM), the highest protein expression of HSP60 and CLPP, and the lowest enzyme activities of GSH-Px, citroyl synthetase (CS) and isocitrate dehydrogenase (ICD) in breast muscle. Consistent with the SS, the Se deposition in breast muscle of broilers received NanoSe was lower than that of broilers received SeY or SeMet. Besides, the regulatory efficiency of NanoSe on the expression of key selenoproteins (such as SELENOS) in breast muscle of heat stressed-broilers was also worse than that of other Se sources.</p><p><strong>Conclusion: </strong>Through comparing the meat quality, Se deposition, muscle fiber type conversion, glycolysis, mitochondrial homeostasis, and mitochondrial TCA cycle-related indicators of breast muscle in heat stressed broilers, we found that the protective effects of organic Se (SeY and SeMet) are better than that of inorganic Se (SS) and NanoSe. As a new Se source, though NanoSe showed some protective effect on breast muscle meat quality of heat stressed broilers, the protective effect of NanoSe is not ideal, compared with other Se sources.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"95"},"PeriodicalIF":6.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls.","authors":"Haixin Bai, Haosheng Zhang, Congwen Wang, Modinat Tolani Lambo, Yang Li, Yonggen Zhang","doi":"10.1186/s40104-024-01052-1","DOIUrl":"10.1186/s40104-024-01052-1","url":null,"abstract":"<p><strong>Background: </strong>C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis.</p><p><strong>Results: </strong>MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05).</p><p><strong>Conclusions: </strong>MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflamma","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"94"},"PeriodicalIF":6.3,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Source and level of dietary iron influence semen quality by affecting inflammation, oxidative stress and iron utilization levels in boars.","authors":"Yinghui Wu, Yamei Li, Yueyue Miao, Hongkui Wei, Hefeng Luo, Chunxiao Ren, Yawei Zhang, Juan Chen, Tanghong Wei, Jiyan Deng, Jian Peng","doi":"10.1186/s40104-024-01032-5","DOIUrl":"10.1186/s40104-024-01032-5","url":null,"abstract":"<p><strong>Background: </strong>Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia, which suggested that the current level and form of iron supplementation in boar diets may be inappropriate. Therefore, 56 healthy Topeka E line boars aged 15-21 months were randomly divided into 5 groups: basal diet supplemented with 96 mg/kg ferrous sulfate (FeSO<sub>4</sub>) and 54 mg/kg glycine chelated iron (Gly-Fe, control); 80 mg/kg or 115 mg/kg Gly-Fe; 80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron (MHA-Fe, from Calimet-Fe) for 16 weeks. The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated.</p><p><strong>Results: </strong>1) Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group (P > 0.05). 2) Serum interleukin-6 (IL-6) and sperm malondialdehyde (MDA) levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group (P < 0.05), and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group (P < 0.05). 3) Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin (P < 0.01), ferritin (P < 0.05), and transferrin receptor (P < 0.01) concentrations, and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group. 4) Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial. However, the effect of Gly-Fe on improving semen quality in boars was not evident. 5) Serum IL-6 level was positively correlated with hepcidin concentration (P < 0.05), which in turn was significantly positively correlated with abnormal sperm rate (P < 0.05). Furthermore, significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters.</p><p><strong>Conclusions: </strong>Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency, but rather reduced serum inflammatory levels and hepcidin concentration, alleviated oxidative stress, increased body iron utilization, and improved semen quality in adult boars.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"93"},"PeriodicalIF":6.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat stress affects mammary metabolism by influencing the plasma flow to the glands.","authors":"Jia Zeng, Diming Wang, Huizeng Sun, Hongyun Liu, Feng-Qi Zhao, Jianxin Liu","doi":"10.1186/s40104-024-01050-3","DOIUrl":"10.1186/s40104-024-01050-3","url":null,"abstract":"<p><strong>Background: </strong>Environmental heat stress (HS) can have detrimental effects on milk production by compromising the mammary function. Mammary plasma flow (MPF) plays a crucial role in nutrient supply and uptake in the mammary gland. In this experiment, we investigated the physiological and metabolic changes in high-yielding cows exposed to different degrees of HS: no HS with thermal-humidity index (THI) below 68 (No-HS), mild HS (Mild-HS, 68 ≤ THI ≤ 79), and moderate HS (Mod-HS, 79 < THI ≤ 88) in their natural environment. Our study focused on the changes in blood oxygen supply and mammary glucose uptake and utilization.</p><p><strong>Results: </strong>Compared with No-HS, the MPF of dairy cows was greater (P < 0.01) under Mild-HS, but was lower (P < 0.01) in cows under Mod-HS. Oxygen supply and consumption exhibited similar changes to the MPF under different HS, with no difference in ratio of oxygen consumption to supply (P = 0.46). The mammary arterio-vein differences in glucose concentration were lower (P < 0.05) under Mild- and Mod-HS than under no HS. Glucose supply and flow were significantly increased (P < 0.01) under Mild-HS but significantly decreased (P < 0.01) under Mod-HS compared to No-HS. Glucose uptake (P < 0.01) and clearance rates (P < 0.01) were significantly reduced under Mod-HS compared to those under No-HS and Mild-HS. Under Mild-HS, there was a significant decrease (P < 0.01) in the ratio of lactose yield to mammary glucose supply compared to that under No-HS and Mod-HS, with no difference (P = 0.53) in the ratio of lactose yield to uptaken glucose among different HS situations.</p><p><strong>Conclusions: </strong>Degrees of HS exert different influences on mammary metabolism, mainly by altering MPF in dairy cows. The output from this study may help us to develop strategies to mitigate the impact of different degrees of HS on milk production.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"92"},"PeriodicalIF":6.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Gu, Qiang Huang, Yuchen Jie, Congjiao Sun, Chaoliang Wen, Ning Yang
{"title":"Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers.","authors":"Shuang Gu, Qiang Huang, Yuchen Jie, Congjiao Sun, Chaoliang Wen, Ning Yang","doi":"10.1186/s40104-024-01049-w","DOIUrl":"10.1186/s40104-024-01049-w","url":null,"abstract":"<p><strong>Background: </strong>Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction.</p><p><strong>Results: </strong>The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair.</p><p><strong>Conclusions: </strong>This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"91"},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claire Stenhouse, Katherine M Halloran, Emily C Hoskins, Robyn M Moses, Guoyao Wu, Heewon Seo, Gregory A Johnson, Larry J Suva, Dana Gaddy, Fuller W Bazer
{"title":"Progesterone regulates tissue non-specific alkaline phosphatase (TNSALP) expression and activity in ovine utero-placental tissues.","authors":"Claire Stenhouse, Katherine M Halloran, Emily C Hoskins, Robyn M Moses, Guoyao Wu, Heewon Seo, Gregory A Johnson, Larry J Suva, Dana Gaddy, Fuller W Bazer","doi":"10.1186/s40104-024-01048-x","DOIUrl":"10.1186/s40104-024-01048-x","url":null,"abstract":"<p><strong>Background: </strong>Tissue non-specific alkaline phosphatase (TNSALP; encoded by the ALPL gene) has a critical role in the postnatal regulation of phosphate homeostasis, yet how TNSALP activity and expression are regulated during pregnancy remain largely unknown. This study tested the hypothesis that progesterone (P4) and/or interferon tau (IFNT) regulate TNSALP activity during pregnancy in sheep.</p><p><strong>Methods: </strong>In Exp. 1, ewes were bred and received daily intramuscular injections of either corn oil vehicle (CO) or 25 mg progesterone in CO (P4) for the first 8 days of pregnancy and were hysterectomized on either Day 9, 12, or 125 of gestation. In Exp. 2, ewes were fitted with intrauterine catheters on Day 7 of the estrous cycle and received daily intramuscular injections of 50 mg P4 in CO and/or 75 mg progesterone receptor antagonist (RU486) in CO from Days 8 to 15, and twice daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/d) from Days 11 to 15 (treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT) and were hysterectomized on Day 16.</p><p><strong>Results: </strong>In Exp. 1, endometria from ewes administered P4 had greater expression of ALPL mRNA than ewes administered CO on Day 12. TNSALP activity appeared greater in the epithelia, stratum compactum stroma, and endothelium of the blood vessels in the endometrium and myometrium from ewes administered P4 than ewes administered CO on Day 12. On Day 125, TNSALP activity localized to uterine epithelial and endothelial cells, independent of P4 treatment. TNSALP activity in placentomes appeared greater in P4 treated ewes and was detected in endothelial cells and caruncular tissue in P4 treated but not CO treated ewes. In Exp. 2, endometrial homogenates from ewes administered RU486 + P4 + CX had lower TNSALP activity those for P4 + CX and P4 + IFNT ewes. Immunoreactive TNSALP protein appeared greater in the mid- and deep-glandular epithelia in RU486 + P4 + CX treated ewes as compared to the other treatment groups. Enzymatic activity appeared greater on the apical surface of the deep glandular epithelia in endometria from ewes treated with RU486 + P4 + CX compared to the other treatment groups.</p><p><strong>Conclusions: </strong>These results suggest that P4, but not IFNT, regulates the expression and activity of TNSALP in utero-placental tissues and has the potential to contribute to the regulation of phosphate availability that is critical for conceptus development during pregnancy.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"90"},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}