M. Ghoranneviss, A. Salar Elahi, A. Abbaspour Tehrani Fard, M. Tajdidzadeh
{"title":"Retraction Note: Measurements of the Plasma Current Density and Q-Profiles in IR-T1 Tokamak","authors":"M. Ghoranneviss, A. Salar Elahi, A. Abbaspour Tehrani Fard, M. Tajdidzadeh","doi":"10.1007/s10894-025-00487-2","DOIUrl":"10.1007/s10894-025-00487-2","url":null,"abstract":"","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Phased Array Ultrasonic Testing Techniques for Austenitic Stainless Steel Butt Welds","authors":"Chengwen Li, Rui wang, Zhihong Liu, Haibiao Ji, Shijun Qin, Ren Chen, Yaqi Zhong, Huapeng Wu","doi":"10.1007/s10894-025-00475-6","DOIUrl":"10.1007/s10894-025-00475-6","url":null,"abstract":"<div><p>The procedure of ultrasonic testing for austenitic stainless steel welds relies heavily on the accurate assessment of actual welding faults. The research subject of this paper is a 40 mm 316L stainless steel butt weld, utilized in fusion reactors. Based on the weld acoustic performance test, sound field modeling, and reference block method, a double crystal probe S-Scan (sector scan) process is suggested. To detect the missed vertical-type groove flaws, a waveform conversion-based total focusing method (TFM) is developed. The study's findings demonstrate that the reliability of ultrasonic testing of austenitic stainless steel welds can be significantly increased by combining conventional sector scanning with cutting-edge TFM technology.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaling Analysis on In-VV LOCA for the Experimental Facility of Water-Cooled Components in CFETR","authors":"Qixin Ling, Songlin Liu","doi":"10.1007/s10894-025-00480-9","DOIUrl":"10.1007/s10894-025-00480-9","url":null,"abstract":"<div><p>The Vacuum Vessel (VV), as the first confinement barrier of the Chinese Fusion Engineering Test Reactor (CFETR) must guarantee its integrity once the In Vacuum Vessel Loss of Coolant Accident (In-VV LOCA) happens. Enough experimental verifications are inevitable. And the data from the experimental facility should be convincing with an acceptable cost. In the present research, scaling criteria are identified for the In-VV LOCA, which can provide the direction for the design scheme of the experimental facility. The experimental facility employs the same working fluid and the equal thermal operation conditions. The volume scaling factor of 1/1000 for the VV with a toroidal structure adopted in the experimental facility is selected. The similarities of the flow at the break, flash and the flow resistance are prioritized. Through the computational simulation for the experimental facility, it has been demonstrated that the thermal hydraulic responses could be reappeared in the experimental facility within an acceptable range of distortions.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew S. Parsons, Margaret Porcelli, Eric D. Emdee, Robert J. Goldston
{"title":"Thermal Response of a Lithium Vapor Divertor to Cyclical Operation","authors":"Matthew S. Parsons, Margaret Porcelli, Eric D. Emdee, Robert J. Goldston","doi":"10.1007/s10894-025-00479-2","DOIUrl":"10.1007/s10894-025-00479-2","url":null,"abstract":"<div><p>The lithium vapor divertor concept is being developed as a method to achieve detached divertor conditions in a tokamak while minimizing impurity radiation losses from the core plasma. SOLPS-ITER modeling has previously been used to identify some of the geometric constraints and required lithium evaporation rate of a lithium vapor divertor in a medium-sized tokamak during steady-state operation. Here an updated conceptual design based on these operating requirements is introduced and the thermal response of the system is modeled during cyclical operation, consistent with operation in a short-pulse tokamak. Controllability of the temperature of the lithium capillary porous system (CPS) is achieved by adopting a design where there is no line-of-sight for radiation from the plasma to reach the heated CPS surface. Operational strategies to minimize the amount of lithium evaporated between plasma discharges while achieving steady evaporation rates during plasma discharges are discussed and modeled here. The optimal feedforward control strategy demonstrated in this work is to ramp up the temperature of the evaporator as quickly as possible immediately before a plasma discharge and then reduce the heating to match the desired steady-state net evaporation rate just before the plasma discharge begins, allowing the thermal inertia of the system to stabilize the evaporation rate during the first second of the plasma discharge.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-025-00479-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Note: Effects of Resonant Helical Field (RHF) on Equilibrium Properties of IR-T1 Tokamak Plasma","authors":"A. Salar Elahi, M. Ghoranneviss","doi":"10.1007/s10894-025-00482-7","DOIUrl":"10.1007/s10894-025-00482-7","url":null,"abstract":"","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of E × B Drift in Divertor Detachment Control via Boron Powder Injection on EAST","authors":"Lei Peng, Zhen Sun, Jizhong Sun, Rajesh Maingi, Guozhang Jia, Xavier Bonnin, Fang Gao, GuiZhong Zuo, Wei Xu, Weikang Wang, Jinyuan Liu","doi":"10.1007/s10894-025-00477-4","DOIUrl":"10.1007/s10894-025-00477-4","url":null,"abstract":"<div><p>The effects of B powder injection on plasma detachment about EAST discharge were studied by using SOLPS-ITER code package with the effects of <b><i>E</i></b> × <b><i>B</i></b> drifts considered. The simulation results show that plasma detachment occurs at the inner target in favourable toroidal magnetic field (<b><i>B</i></b><sub><i>t</i></sub>) direction at a relatively low B powder flow rate, one order of magnitude lower than that at the outer target. In a similar scenario with unfavourable <b><i>B</i></b><sub><i>t</i></sub>, it is found that the detachment thresholds of B flow rate for both the inner and outer targets are close and of the same order as that for the outer target with favourable <b><i>B</i></b><sub><i>t</i></sub>. In favourable <b><i>B</i></b><sub><i>t</i></sub> direction at B powder flow rate of 1.2 × 10<sup>21</sup> atoms/s, a localized, broadened high-density region is formed near the inner target benefitted by the injection location and the <b><i>E</i></b> × <b><i>B</i></b> drift, and a radiation-intensified zone, mostly contributed by B<sup>1+</sup> and B<sup>2+</sup>, occurs there. The <b><i>E</i></b> × <b><i>B</i></b> drift facilitates plasma detachment at the inner target and simultaneously amplifies the in–out divertor asymmetry. In addition, the simulation results with three different injection locations show that the injection from outer strike point leads to the lowest <i>Z</i><sub><i>eff</i></sub> inside the separatrix and has an intermediate flow rate for detachment at the outer target, comparing with the X-point and upstream locations.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. R. Ghanbari, M. Ghoranneviss, K. Ghanbari, A. Salar Elahi, M. K. Salem, S. Mohammadi, R. Arvin
{"title":"Retraction Note: Effect of Resonant Helical Field (RHF) on Runaway Electrons in Tokamaks","authors":"M. R. Ghanbari, M. Ghoranneviss, K. Ghanbari, A. Salar Elahi, M. K. Salem, S. Mohammadi, R. Arvin","doi":"10.1007/s10894-025-00484-5","DOIUrl":"10.1007/s10894-025-00484-5","url":null,"abstract":"","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power Balance of the Quasi-Stationary Stagnation Phase of Superdense Boron-Proton Plasma","authors":"Alexei Yu. Chirkov, Evgeny G. Vovkivsky","doi":"10.1007/s10894-025-00478-3","DOIUrl":"10.1007/s10894-025-00478-3","url":null,"abstract":"<div><p>The features of high-gain aneutronic p–<sup>11</sup>B fusion are examined. A comparison of inertial systems with extremely high plasma densities (<i>n</i> ~ 10<sup>30</sup>–10<sup>31</sup> m<sup>–3</sup>) and stationary systems with magnetic confinement of low-density plasma (<i>n</i> ~ 10<sup>20</sup>–10<sup>22</sup> m<sup>–3</sup>) shows that it is also necessary to analyze combined schemes based on magneto-inertial systems with fuel refill. Present work considers limiting modes of the quasi-stationary phase of fusion, which show the maximum plasma gain at plasma density <i>n</i> ~ 10<sup>31</sup> m<sup>–3</sup> and ion temperatures <i>T</i><sub><i>i</i></sub> ~ 200 keV, electron temperatures <i>T</i><sub><i>e</i></sub> ~ 100 keV at the beginning of the quasi-stationary phase. The content of reaction products (α-particles) has a significant influence on the parameters of the system. If the confinement time of α-particles is the same as for the fuel components, then due to radiation the energy gain <i>Q</i> ~ 1. In modes with a reduced confinement time of α-particles, the gain reaches a value of <i>Q</i> ~ 6. A further increase in <i>Q</i> requires extremely high plasma energy.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}