Journal of Fusion Energy最新文献

筛选
英文 中文
Upgrade of ITCD code and its Application to Global lithium Impurity Transport Modelling for EAST Tokamak
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2025-02-01 DOI: 10.1007/s10894-025-00476-5
Y. L. Liu, Y. T. Chen, Z. H. Gao, C. W. Zhang, S. Y. Wang, S. Y. Dai
{"title":"Upgrade of ITCD code and its Application to Global lithium Impurity Transport Modelling for EAST Tokamak","authors":"Y. L. Liu,&nbsp;Y. T. Chen,&nbsp;Z. H. Gao,&nbsp;C. W. Zhang,&nbsp;S. Y. Wang,&nbsp;S. Y. Dai","doi":"10.1007/s10894-025-00476-5","DOIUrl":"10.1007/s10894-025-00476-5","url":null,"abstract":"<div><p>Liquid metals, like lithium (Li), are considered a promising plasma-facing material due to their self-repairing, in comparison with the conventional solid materials that have limitations in handling high heat flux in future fusion devices. To predictively simulate global Li transport under the lithium divertor condition, the three-dimensional Monte Carlo code ITCD has been upgraded significantly, in terms of the simulation domain (from the sole divertor region in a limited toroidal range to the entire edge plasma region in a full toroidal torus). The expansion of the simulation zone brings about the new demand of the computational resource, which motivates us to implement the guiding-center (GC) particle push approach into ITCD. The trajectory of charged Li particle using the GC particle push approach shows a good agreement with the full-orbit (FO) particle push method. The FO and GC hybrid particle push scheme has been used to deal with the gyration scrape-off effect and meanwhile speed up the calculation of the global Li transport. The characteristics of Li impurity density and deposition distributions are studied in detail by ITCD.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure of Sn-Wetted W CPS Targets to Simultaneous NBI Beam and High-Power CW Laser Pulses at the High-Heat Flux OLMAT Facility
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2025-01-22 DOI: 10.1007/s10894-025-00474-7
E. Oyarzabal, A. De Castro, D. Alegre, P. Fernandez-Mayo, D. Tafalla, K. J. McCarthy, The OLMAT Team
{"title":"Exposure of Sn-Wetted W CPS Targets to Simultaneous NBI Beam and High-Power CW Laser Pulses at the High-Heat Flux OLMAT Facility","authors":"E. Oyarzabal,&nbsp;A. De Castro,&nbsp;D. Alegre,&nbsp;P. Fernandez-Mayo,&nbsp;D. Tafalla,&nbsp;K. J. McCarthy,&nbsp;The OLMAT Team","doi":"10.1007/s10894-025-00474-7","DOIUrl":"10.1007/s10894-025-00474-7","url":null,"abstract":"<div><p>First experiments are reported of the simultaneous exposure of a number of Sn-wetted W CPSs and a reference W CPS to 100 ms NBI pulses (divertor steady-state loading conditions) and 2 ms long high-energy laser pulses (divertor ELM like loading conditions) at the High-Heat Flux OLMAT facility. The use of a fast-frame imaging camera allows monitoring the onset of particle ejection from the targets during laser pulses and obtaining the corresponding laser heat fluxes as a measure of the resilience of these targets. Fast camera images are used also to determine ejected particle numbers and to estimate their maximum velocities as laser power is increased in order to compare the influence of W CPS structure on these parameters. In addition, the craters resulting from particle ejection are studied for each target with an optical microscope and a scanning electron microscope. Moreover, in-situ W and Sn particle ejection is followed using visible emission spectroscopy and post-exposure W melting after particle ejection is observed using the energy dispersive X-ray method EDX for all the studied targets. This shows that Sn is unable to protect the underlying W substrate from high-energy laser damage, albeit a subsequent refilling of the formed craters with Sn is visible during NBI-only pulses after laser damage. Thus, it is considered that optimization of surface refilling/replenishment with Sn is needed to improve the W substrate protection. From this work, it is also found that the W CPS reference material has a higher laser heat flux threshold for particle ejection than the Sn-wetted targets. Nevertheless, it is important to take into account that in these experiments with laser pulses, the possible beneficial effects of vapor shielding that can take place during particle irradiation at ELMs or disruptions are not present, thus these experiments represent a worst-case scenario.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-025-00474-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Stability and Corrosion Resistance in Liquid Lithium of Brazed Tungsten Smart Alloy/RAFM Steel Joints 钨智能合金/RAFM钢钎焊接头的热稳定性和耐锂液腐蚀性能
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-12-10 DOI: 10.1007/s10894-024-00472-1
V. O. Kirillova, N. S. Popov, O. N. Sevryukov, X. Tan, A. A. Bazhenov, S. M. Irmagambetova, A. N. Suchkov
{"title":"Thermal Stability and Corrosion Resistance in Liquid Lithium of Brazed Tungsten Smart Alloy/RAFM Steel Joints","authors":"V. O. Kirillova,&nbsp;N. S. Popov,&nbsp;O. N. Sevryukov,&nbsp;X. Tan,&nbsp;A. A. Bazhenov,&nbsp;S. M. Irmagambetova,&nbsp;A. N. Suchkov","doi":"10.1007/s10894-024-00472-1","DOIUrl":"10.1007/s10894-024-00472-1","url":null,"abstract":"<div><p>Oxidation resistant smart tungsten alloys (SA) are considered a promising plasma facing material for DEMO reactors. SA-based plasma facing components (PFC) have to meet several long-term operation requirements. Among other criteria, these PFC should be able to withstand high thermal loads and be corrosion resistant in liquid lithium for a liquid first wall design implementation. In this work, smart tungsten alloys WCrY, WCrZr were brazed to reduced activation ferritic-martensitic (RAFM) steels Eurofer97, CLAM via 48Ti–48Zr–4Be wt.% brazing alloy. Thermal stability of the brazed joints was investigated. High temperature shear tests at 300, 600 °C were carried out. The shear strength of WCrZr/Ta/CLAM joints is 50 ± 4 and 49 ± 5 MPa at 300 and 600 °C, respectively. Unbrazing of the WCrY/Ta/Eurofer97 and WCrZr/Ta/CLAM joints occurs at 1447 and 1522 °C, respectively, due to the melting of steels. Corrosion resistance of the smart tungsten alloys, SA/Ta/RAFM joints in liquid lithium at 600 °C, 100 h exposure was demonstrated.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancements in Vertical Instability Control for the HL-3 Tokamak HL-3托卡马克垂直不稳定控制的改进
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-12-10 DOI: 10.1007/s10894-024-00473-0
Panle Liu, Bo Li, Xiang Chen, Shaoyong Liang, Qiang Li, Junzhao Zhang, Yihang Chen, Da Li
{"title":"Enhancements in Vertical Instability Control for the HL-3 Tokamak","authors":"Panle Liu,&nbsp;Bo Li,&nbsp;Xiang Chen,&nbsp;Shaoyong Liang,&nbsp;Qiang Li,&nbsp;Junzhao Zhang,&nbsp;Yihang Chen,&nbsp;Da Li","doi":"10.1007/s10894-024-00473-0","DOIUrl":"10.1007/s10894-024-00473-0","url":null,"abstract":"<div><p>Vertical position control of tokamak plasmas is essential for exploring operational limits and ensuring stable operation at high elongations to avoid disruptions. This study focuses on improving vertical instability control in the HL-3 tokamak by enhancing the signal-to-noise ratio of control signals and optimizing control strategies. We employed improved diagnostic techniques using Mirnov coils and flux loops, combined with digital filtering technology, to mitigate the effects of power supply switching and measurement noise. The vertical stabilization (VS) control system was upgraded with an optimized low-pass filter for vertical position estimation, a novel method for vertical velocity estimation using direct voltage signals from diagnostics, and an improved control algorithm. These enhancements resulted in significant improvements in control precision and noise reduction. Experimental results demonstrated successful control of highly elongated plasmas (<span>(kappa )</span> up to 1.8) with high plasma currents (up to 1.6 MA), achieving vertical position control accuracy better than 1 cm during the plasma current ramp-up phase. These advancements expand the operational parameter space of HL-3, paving the way for higher performance plasma operation.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary Control-Oriented Modeling of the ITER Steering Mirror Assembly and Local Control System in the Electron Cyclotron Heating & Current Drive Actuator 热核实验堆转向镜组件和电子回旋加速器加热与电流驱动致动器局部控制系统的初步控制导向建模
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-10-29 DOI: 10.1007/s10894-024-00465-0
G. Grapow, T. Ravensbergen, M. D’Onorio, F. Pesamosca, A. Vu, G. Carannante
{"title":"Preliminary Control-Oriented Modeling of the ITER Steering Mirror Assembly and Local Control System in the Electron Cyclotron Heating & Current Drive Actuator","authors":"G. Grapow,&nbsp;T. Ravensbergen,&nbsp;M. D’Onorio,&nbsp;F. Pesamosca,&nbsp;A. Vu,&nbsp;G. Carannante","doi":"10.1007/s10894-024-00465-0","DOIUrl":"10.1007/s10894-024-00465-0","url":null,"abstract":"<div><p>The ITER Electron Cyclotron Heating and Current Drive (ECH) plays a pivotal role in heating and controlling fusion plasmas, with the Steering Mirrors being a crucial component of this actuator. A representative model of the ECH is compulsory in the development and validation of the Plasma Control System (PCS). This manuscript aims to propose a Control-Oriented model of the Steering Mirrors based on the design tested at the Swiss Plasma Centre. In this design a steering mirror rotates on some frictionless flexure pivots due to the action of a set of externally pressurized bellows acting against pre-compressed springs. This system is referred to as the Steering Mirror Assembly (SMA). The adherence of the model is tested by comparing the simulations with the experimental results, while considering ITER’s most recent requirements. Performances, generally increased in terms of accuracy, are in line with the prototype’s results.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Insulation Technology for Nb3Sn Layer Coil of Superconducting Conductor Testing Facility 超导导体测试设备 Nb3Sn 层线圈绝缘技术研究
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-10-29 DOI: 10.1007/s10894-024-00471-2
Yuanyuan Ma, Bozhou Huang, Yongzheng Yao, Houxiang Han, Changneng Zhang, Lei Wu, Yi Shi
{"title":"Research on Insulation Technology for Nb3Sn Layer Coil of Superconducting Conductor Testing Facility","authors":"Yuanyuan Ma,&nbsp;Bozhou Huang,&nbsp;Yongzheng Yao,&nbsp;Houxiang Han,&nbsp;Changneng Zhang,&nbsp;Lei Wu,&nbsp;Yi Shi","doi":"10.1007/s10894-024-00471-2","DOIUrl":"10.1007/s10894-024-00471-2","url":null,"abstract":"<div><p>The Superconducting Conductor Testing Facility, which is developed to evaluate the reliability of engineering technology and safe operation in a fusion reactor operation environment, is under construction by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Since the Nb<sub>3</sub>Sn layer coil of this test facility adopts the manufacturing process of the wind &amp; react, the high-strength glass fiber used as the inter-turn insulation material will carbonize after high-temperature heat treatment at 665℃, thereby reducing the mechanical and electrical properties of the winding. The surface decarburization and modification process of high-strength glass fiber was developed to improve the properties of glass fiber after heat treatment. It is verified that the developed glass fiber tape treatment process can meet manufacturing process requirements of layered Nb<sub>3</sub>Sn superconducting magnets through the coil winding radial pressure test and VPI sample performance test. This processing technology has been successfully applied in the manufacturing of experimental magnets, providing technical support for the insulation manufacturing of a large Nb<sub>3</sub>Sn layer coil.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators 利用傅立叶神经算子实现扩散状态下的高能量密度辐射传输
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-10-24 DOI: 10.1007/s10894-024-00470-3
Joseph Farmer, Ethan Smith, William Bennett, Ryan McClarren
{"title":"High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators","authors":"Joseph Farmer,&nbsp;Ethan Smith,&nbsp;William Bennett,&nbsp;Ryan McClarren","doi":"10.1007/s10894-024-00470-3","DOIUrl":"10.1007/s10894-024-00470-3","url":null,"abstract":"<div><p>Radiative heat transfer is a fundamental process in high energy density physics and inertial fusion. Accurately predicting the behavior of Marshak waves across a wide range of material properties and drive conditions is crucial for design and analysis of these systems. Conventional numerical solvers and analytical approximations often face challenges in terms of accuracy and computational efficiency. In this work, we propose a novel approach to model Marshak waves using Fourier Neural Operators (FNO). We develop two FNO-based models: (1) a base model that learns the mapping between the drive condition and material properties to a solution approximation based on the widely used analytic model by Hammer &amp; Rosen (2003), and (2) a model that corrects the inaccuracies of the analytic approximation by learning the mapping to a more accurate numerical solution. Our results demonstrate the strong generalization capabilities of the FNOs and show significant improvements in prediction accuracy compared to the base analytic model.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00470-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Determination of the Plasma Internal Inductance and Evaluation of its Effects on Plasma Horizontal Displacement in IR-T1 Tokamak 撤回说明:IR-T1 托卡马克中等离子体内部电感的测定及其对等离子体水平位移影响的评估
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-10-16 DOI: 10.1007/s10894-024-00467-y
A. Salar Elahi, M. Ghoranneviss
{"title":"Retraction Note: Determination of the Plasma Internal Inductance and Evaluation of its Effects on Plasma Horizontal Displacement in IR-T1 Tokamak","authors":"A. Salar Elahi,&nbsp;M. Ghoranneviss","doi":"10.1007/s10894-024-00467-y","DOIUrl":"10.1007/s10894-024-00467-y","url":null,"abstract":"","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Differences Between the Toroidal and Poloidal Flux Loops in the Measurement of Plasma Position in Tokamaks 撤回说明:测量托卡马克等离子体位置时环形和极环形通量环的差异
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-10-12 DOI: 10.1007/s10894-024-00466-z
A. Salar Elahi, M. Ghoranneviss
{"title":"Retraction Note: Differences Between the Toroidal and Poloidal Flux Loops in the Measurement of Plasma Position in Tokamaks","authors":"A. Salar Elahi,&nbsp;M. Ghoranneviss","doi":"10.1007/s10894-024-00466-z","DOIUrl":"10.1007/s10894-024-00466-z","url":null,"abstract":"","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Injected Current Streams on MHD Equilibrium Reconstruction of Local Helicity Injection Plasmas in a Spherical Tokamak 注入电流流对球形托卡马克中局部螺旋注入等离子体的 MHD 平衡重构的影响
IF 1.9 4区 工程技术
Journal of Fusion Energy Pub Date : 2024-10-12 DOI: 10.1007/s10894-024-00460-5
J. D. Weberski, M. W. Bongard, S. J. Diem, R. J. Fonck, J. A. Goetz, M. D. Nornberg, J. A. Reusch, C. E. Schaefer, A. C. Sontag
{"title":"Effects of Injected Current Streams on MHD Equilibrium Reconstruction of Local Helicity Injection Plasmas in a Spherical Tokamak","authors":"J. D. Weberski,&nbsp;M. W. Bongard,&nbsp;S. J. Diem,&nbsp;R. J. Fonck,&nbsp;J. A. Goetz,&nbsp;M. D. Nornberg,&nbsp;J. A. Reusch,&nbsp;C. E. Schaefer,&nbsp;A. C. Sontag","doi":"10.1007/s10894-024-00460-5","DOIUrl":"10.1007/s10894-024-00460-5","url":null,"abstract":"<div><p>Open field line currents are intrinsic to DC helicity injection plasma startup and pose a challenge for inferring the plasma equilibrium with standard reconstruction analysis. Local helicity injection (LHI) is a type of DC helicity injection which uses small, modular current sources to drive force-free current along helical field lines to produce tokamak plasmas. MHD modeling and magnetic measurements during LHI indicate the injected current streams remain coherent as helical structures on the outboard edge of a core toroidal plasma that is tokamak-like in a toroidally averaged sense. To extract core plasma equilibrium properties, external magnetic diagnostics corrected for contributions from the injected current streams are fitted by a standard Grad-Shafranov equilibrium code. An iterative approach for estimating and subtracting the stream contributions from the diagnostic signals is described and applied to a model equilibrium database to reduce systematic errors introduced by the streams. Convergence is usually attained with 2 to 4 iterations, with derived equilibrium parameters matching the prescribed axisymmetric core values to within estimated experimental uncertainties. Accurate recovery of core parameters occurs when the ratio of the net toroidal windup current from the streams to the core plasma current is less than 0.2, which is typically satisfied in most experiments.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00460-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信