D. H. Zhang, X. C. Meng, G. Z. Zuo, X. Li, L. Yang, B. Cao, J. S. Hu
{"title":"Study on Corrosion Behavior of 3D-Printing W and WZrC in Static Liquid Li","authors":"D. H. Zhang, X. C. Meng, G. Z. Zuo, X. Li, L. Yang, B. Cao, J. S. Hu","doi":"10.1007/s10894-025-00488-1","DOIUrl":null,"url":null,"abstract":"<div><p>A liquid Lithium (Li) Tungsten (W)-based divertor, which combines the advantages of both W and liquid Li, is a promising solution for the divertor of future fusion reactors. The 3D printing technology, which has advantages such as the ability to process complex structures based on 3D models and high energy density suitable for the manufacturing of high-melting-point metals, will play an important role in the manufacturing of divertor components. To address the corrosion behavior of target materials in liquid Li under operational conditions, we investigated the corrosion behavior of 3D-printing W and WZrC in static liquid Li at 550 °C for 500 h. After being exposed to liquid Li, the samples exhibited mass loss, grain boundary corrosion, and pitting corrosion. The mass loss rates of W and WZrC in liquid Li were 3.3 × 10<sup>–2</sup> and 1.76 × 10<sup>–2</sup> g/(m<sup>2</sup>·h), respectively. The XPS and XRD results of the samples did not show significant changes before and after the test. Corrosion of liquid Li has a greater effect on the thermal conductivity of W than that of WZrC. In this study, adding ZrC to W may be an effective way to improve the liquid Li corrosion resistance of W. Reducing surface cracks may improve the resistance of 3D-printing W alloys to liquid Li corrosion.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00488-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A liquid Lithium (Li) Tungsten (W)-based divertor, which combines the advantages of both W and liquid Li, is a promising solution for the divertor of future fusion reactors. The 3D printing technology, which has advantages such as the ability to process complex structures based on 3D models and high energy density suitable for the manufacturing of high-melting-point metals, will play an important role in the manufacturing of divertor components. To address the corrosion behavior of target materials in liquid Li under operational conditions, we investigated the corrosion behavior of 3D-printing W and WZrC in static liquid Li at 550 °C for 500 h. After being exposed to liquid Li, the samples exhibited mass loss, grain boundary corrosion, and pitting corrosion. The mass loss rates of W and WZrC in liquid Li were 3.3 × 10–2 and 1.76 × 10–2 g/(m2·h), respectively. The XPS and XRD results of the samples did not show significant changes before and after the test. Corrosion of liquid Li has a greater effect on the thermal conductivity of W than that of WZrC. In this study, adding ZrC to W may be an effective way to improve the liquid Li corrosion resistance of W. Reducing surface cracks may improve the resistance of 3D-printing W alloys to liquid Li corrosion.
期刊介绍:
The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews.
This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.