Study on Corrosion Behavior of 3D-Printing W and WZrC in Static Liquid Li

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
D. H. Zhang, X. C. Meng, G. Z. Zuo, X. Li, L. Yang, B. Cao, J. S. Hu
{"title":"Study on Corrosion Behavior of 3D-Printing W and WZrC in Static Liquid Li","authors":"D. H. Zhang,&nbsp;X. C. Meng,&nbsp;G. Z. Zuo,&nbsp;X. Li,&nbsp;L. Yang,&nbsp;B. Cao,&nbsp;J. S. Hu","doi":"10.1007/s10894-025-00488-1","DOIUrl":null,"url":null,"abstract":"<div><p>A liquid Lithium (Li) Tungsten (W)-based divertor, which combines the advantages of both W and liquid Li, is a promising solution for the divertor of future fusion reactors. The 3D printing technology, which has advantages such as the ability to process complex structures based on 3D models and high energy density suitable for the manufacturing of high-melting-point metals, will play an important role in the manufacturing of divertor components. To address the corrosion behavior of target materials in liquid Li under operational conditions, we investigated the corrosion behavior of 3D-printing W and WZrC in static liquid Li at 550 °C for 500 h. After being exposed to liquid Li, the samples exhibited mass loss, grain boundary corrosion, and pitting corrosion. The mass loss rates of W and WZrC in liquid Li were 3.3 × 10<sup>–2</sup> and 1.76 × 10<sup>–2</sup> g/(m<sup>2</sup>·h), respectively. The XPS and XRD results of the samples did not show significant changes before and after the test. Corrosion of liquid Li has a greater effect on the thermal conductivity of W than that of WZrC. In this study, adding ZrC to W may be an effective way to improve the liquid Li corrosion resistance of W. Reducing surface cracks may improve the resistance of 3D-printing W alloys to liquid Li corrosion.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00488-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A liquid Lithium (Li) Tungsten (W)-based divertor, which combines the advantages of both W and liquid Li, is a promising solution for the divertor of future fusion reactors. The 3D printing technology, which has advantages such as the ability to process complex structures based on 3D models and high energy density suitable for the manufacturing of high-melting-point metals, will play an important role in the manufacturing of divertor components. To address the corrosion behavior of target materials in liquid Li under operational conditions, we investigated the corrosion behavior of 3D-printing W and WZrC in static liquid Li at 550 °C for 500 h. After being exposed to liquid Li, the samples exhibited mass loss, grain boundary corrosion, and pitting corrosion. The mass loss rates of W and WZrC in liquid Li were 3.3 × 10–2 and 1.76 × 10–2 g/(m2·h), respectively. The XPS and XRD results of the samples did not show significant changes before and after the test. Corrosion of liquid Li has a greater effect on the thermal conductivity of W than that of WZrC. In this study, adding ZrC to W may be an effective way to improve the liquid Li corrosion resistance of W. Reducing surface cracks may improve the resistance of 3D-printing W alloys to liquid Li corrosion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信