{"title":"Design and Analysis of Mock-up of CFETR COOL Blanket for Neutronic Experiment","authors":"Qiankun Shao, Qingjun Zhu","doi":"10.1007/s10894-025-00490-7","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study is to design and analysis a neutronic experimental mock-up for supercritical carbon dioxide cooled Lithium-Lead (COOL) blanket of CFETR. The protype of mock-up is the equatorial outboard breeding unit (3# unit) of COOL blanket, which have the largest neutron wall loading. To verify the reliability of neutronic design of COOL blanket, the neutronic property of mock-up should be designed to be consistent with the protype. To facilitate detector layout and component installation, simplifications in radial arrangement of mock-up are necessary. The determined radial layout is arranged as Plasma Facing Component, First Wall, Gap 1, Flow Channel Insert 1 (FCI 1), Breeding Zone (BZ), Flow Channel Insert 2 (FCI 2), Gap 2 and Manifold (MF). And the dimensions of toroidal and poloidal were determined by the extent of neutrons leaking from the edge of mock-up. The determined size of the experimental mock-up is 500 mm (Toroidal)×500 mm (Poloidal)×326 mm (Radial). Ultimately, neutronic property and activation property of the mock-up is analyzed. The calculation results showed that the designed mock-up can be used to carry out neutronic experiment. This work will provide a guideline for design of next stage experiment.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00490-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to design and analysis a neutronic experimental mock-up for supercritical carbon dioxide cooled Lithium-Lead (COOL) blanket of CFETR. The protype of mock-up is the equatorial outboard breeding unit (3# unit) of COOL blanket, which have the largest neutron wall loading. To verify the reliability of neutronic design of COOL blanket, the neutronic property of mock-up should be designed to be consistent with the protype. To facilitate detector layout and component installation, simplifications in radial arrangement of mock-up are necessary. The determined radial layout is arranged as Plasma Facing Component, First Wall, Gap 1, Flow Channel Insert 1 (FCI 1), Breeding Zone (BZ), Flow Channel Insert 2 (FCI 2), Gap 2 and Manifold (MF). And the dimensions of toroidal and poloidal were determined by the extent of neutrons leaking from the edge of mock-up. The determined size of the experimental mock-up is 500 mm (Toroidal)×500 mm (Poloidal)×326 mm (Radial). Ultimately, neutronic property and activation property of the mock-up is analyzed. The calculation results showed that the designed mock-up can be used to carry out neutronic experiment. This work will provide a guideline for design of next stage experiment.
期刊介绍:
The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews.
This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.