Martin Mozer Njayou, Mouhamed Ngounouno Ayiwouo, Ismaila Ngounouno
{"title":"Trace metal contamination status in soils of the abandoned gold mining district of Bindiba (East Cameroon): Pollution indices assessment, multivariate analysis and; geostatistical approach","authors":"Martin Mozer Njayou, Mouhamed Ngounouno Ayiwouo, Ismaila Ngounouno","doi":"10.1007/s40201-023-00849-y","DOIUrl":"10.1007/s40201-023-00849-y","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>In this study, contamination by trace metals (TMs) such as Cr, Ni, Cu, As, Pb and Sb in the soils of the Bindiba mining district was assessed. This study aims to reveal the current status of the soil quality of the abandoned gold mining district of Bindiba and provide a scientific basis for its future remediation and overall management. 89 soil samples were systematically collected and characterized in order to determine the concentration of TMs (Cr, Ni, Cu, As, Pb and Sb). To assess the degree of metallic contamination, pollution indices were employed. Both multivariate statistical analysis (MSA) and geostatistical modelling (GM) were used to identify the potential sources of TMs elements and to determine the values of the modified contamination degree (mCd), the Nemerow Pollution Index (NPI) and the potential ecological risk index (RI) at un-sampled points. The results of trace metals (TMEs) characterization showed that the concentration of Cr, Ni, Cu, As, Pb and Sb ranged from 22.15–442.44 mg/kg, 9.25–360.37 mg/kg, 1.28–320.86 mg/kg, 0–46.58 mg/kg, 0–53.27 mg/kg and 0–6.33 mg/kg, respectively. The mean concentration of Cr, Cu and Ni exceeds the continental geochemical background values. The Enrichment Factor (EF) assessment indicates two categories of enrichment: moderately to extremely enrichment for Cr, Ni, and Cu and deficiency to minimal enrichment of Pb, As and Sb. Multivariate statistical analysis shows weak linear correlations between the studied heavy metals and suggests that these metals could not come from the same origins. The geostatistical modelling based on the values of mCd, NI and RI suggests a potential high pollution risk existed in the study area. The mCd, NPI and RI interpolation maps showed that the Northern part of the gold mining district was characterized by a high degree of contamination, heavy pollution, and considerable ecological risk. The dispersion of TMs in soils could mainly be attributed to anthropogenic activities and natural phenomena (chemical weathering or erosion). Appropriate measures should be taken to manage and remediate the TMs pollution in this abandoned gold mining district in order to reduce its negative effects on the environment and health of the local population.</p></div></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"143 - 155"},"PeriodicalIF":3.4,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00849-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4890355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uttam Kumar Sahu, Jinsong Chen, Hui Ma, Manoj Kumar Sahu, Sandip Mandal, Bo Lai, Shengyan Pu
{"title":"As(III) removal from aqueous solutions using simultaneous oxidation and adsorption process by hierarchically magnetic flower-like Fe3O4@C-dot@MnO2 nanocomposite","authors":"Uttam Kumar Sahu, Jinsong Chen, Hui Ma, Manoj Kumar Sahu, Sandip Mandal, Bo Lai, Shengyan Pu","doi":"10.1007/s40201-022-00834-x","DOIUrl":"10.1007/s40201-022-00834-x","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>In the present study, a magnetic flower-like Fe<sub>3</sub>O<sub>4</sub>@C-dot@MnO<sub>2</sub> nanocomposite was synthesized by hydrothermal method and applied for As(III) removal by oxidation and adsorption process. Individual property of the entire material (i.e. magnetic property of Fe<sub>3</sub>O<sub>4</sub>, mesoporous surface property of C-dot and oxidation property of MnO<sub>2</sub>) make the composite efficient with good adsorption capacity for As(III) adsorption. The Fe<sub>3</sub>O<sub>4</sub>@C-dot@MnO<sub>2</sub> nanocomposite had a saturation magnetization of 26.37 emu/g and it magnetically separated within 40 s. The Fe<sub>3</sub>O<sub>4</sub>@C-dot@MnO<sub>2</sub> nanocomposite was able to reduce the 0.5 mg/L concentration of As(III) to 0.001 mg/L in just 150 min at pH 3. Pseudo-second-order kinetic and Langmuir isotherm model agreed with experimental data. The uptake capacity of Fe<sub>3</sub>O<sub>4</sub>@C-dot@MnO<sub>2</sub> nanocomposite was 42.68 mg/g. The anions like chloride, sulphate and nitrate did not show any effect on removal but carbonate and phosphate influenced the As(III) removal rate. Regeneration was studied with NaOH and NaClO solution and the adsorbent was used for repeated five cycles above 80% removal capacity. The XPS studies proposed that As(III) first oxidized to As(V) then adsorb on the composite surface. This study shows the potential applicability of Fe<sub>3</sub>O<sub>4</sub>@C-dot@MnO<sub>2</sub> nanocomposite to high extent and gives a suitable path for the proficient removal of As(III) from wastewater.</p></div></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"47 - 61"},"PeriodicalIF":3.4,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00834-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5115096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anwar Ahmad, Alaya Said Senaidi, Amal S. Al-Rahbi, Salam K. Al-dawery
{"title":"Biodegradation of petroleum wastewater for the production of bioelectricity using activated sludge biomass","authors":"Anwar Ahmad, Alaya Said Senaidi, Amal S. Al-Rahbi, Salam K. Al-dawery","doi":"10.1007/s40201-022-00846-7","DOIUrl":"10.1007/s40201-022-00846-7","url":null,"abstract":"<div><h3>Objective</h3><p>This research is based on the treatment of petroleum wastewater (PWW) with pretreated activated sludge for the production of electricity and removal of chemical oxygen demand (COD) using microbial fuel cell (MFC).</p><h3>Methods</h3><p>The application of the MFC system which uses activated sludge biomass (ASB) as a substrate resulted in the reduction of COD by 89.5% of the original value. It generated electricity equivalent to 8.18 mA/m<sup>2</sup> which can be reused again. This would solve the majority of environmental crises which we are facing today.</p><h3>Results</h3><p>This study discusses the application of ASB to enhance the degradation of PWW for the production of a power density of 1012.95 mW/m<sup>2</sup> when a voltage of 0.75 V (voltage) is applied at 30:70% of ASB when MFC is operated in a continuous mode. Microbial biomass growth was catalyzed using activated sludge biomass. The growth of microbes was observed by scanning through an electron microscope. Through oxidation in the MFC system, bioelectricity is generated which is used in the cathode chamber. Furthermore, the MFC operated using ASB in a ratio of 35 with the current density, which decreased to 494.76 mW/m<sup>2</sup> at 10% ASB.</p><h3>Application</h3><p>Our experiments demonstrate that the efficiency of the MFC system can generate bioelectricity and treat petroleum wastewater by using activated sludge biomass.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"133 - 142"},"PeriodicalIF":3.4,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00846-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4998350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model-based fractionation of biomass in a biological nutrient removal system and its effect on the removal efficiencies","authors":"Neslihan Manav-Demir","doi":"10.1007/s40201-022-00845-8","DOIUrl":"10.1007/s40201-022-00845-8","url":null,"abstract":"<div><p>Fractionation of active biomass in a five-stage Bardenpho process was accomplished using an MS Excel wastewater treatment plant modeling tool based on Activated Sludge Model No. 3 extended with a bio-P module. The biomass fractions within the treatment system were predicted as autotrophs, ordinary heterotrophs, and phosphorus accumulating organisms (PAOs). Several simulations were performed in a Bardenpho process using various C/N/P ratios in primary effluent. Biomass fractionation was obtained from steady-state simulation results. The results suggest that the mass percentage of autotrophs, heterotrophs, and PAOs in active biomass range from 1.7 to 7.8%, 5.7–69.0%, and 23.2–92.6%, respectively, depending on characteristics of primary effluent. Results of principal component analysis showed that TKN/COD ratio in primary effluent determines the population of autotrophs and ordinary heterotrophs whereas PAO population is mainly a function of TP/COD ratio.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"123 - 132"},"PeriodicalIF":3.4,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00845-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4998206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prenatal blood lead levels and Birth Weight: a Meta-analysis study","authors":"Mohsen Vigeh, Leyla Sahebi, Kazuhito Yokoyama","doi":"10.1007/s40201-022-00843-w","DOIUrl":"10.1007/s40201-022-00843-w","url":null,"abstract":"<div><h3>Purpose</h3><p>Lead, a known toxic metal, causes several adverse reproductive effects, including low birth weight. Fortunately, the exposure level has sharply decreased during the recent decades, but a definitive safe level did not introduce for pregnant women yet. The current meta-analysis study aimed to conduct a quantitative estimation of maternal and umbilical cord blood lead effects on birth weight.</p><h3>Methods</h3><p>Two researchers have independently searched the scientific literature for retrieving related studies using the PRISMA criteria for data extraction. Twenty-one full-text articles were selected from primary 5006 titles, limited by the English language and published between 1991 and 2020 on humans.</p><h3>Results</h3><p>The pooled mean of maternal and umbilical cord blood lead levels were 6.85 µg/dL (95% CI: 3.36–10.34) and 5.41 µg/dL (95%CI: 3.43–7.40), respectively. The correlation coefficient analysis showed a significant inverse association between the mean maternal blood lead level and birth weight, which was confirmed by Fisher Z-Transformation analysis (-0.374, 95% CI: -0.382, -0.365, p < 0.01). In addition, a significantly lower birth weight (∆: 229 gr, p < 0.05) was found in the relatively high level of maternal blood lead than in low-level exposure (> 5 µg/dL vs. ≤ 5 µg/dL, respectively).</p><h3>Conclusion</h3><p>In short, the present study findings suggest an increasing maternal blood lead levels could be a potential risk factor for reducing birth weight. Thus, pregnant women should avoid lead exposure, as much as possible.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"1 - 10"},"PeriodicalIF":3.4,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00843-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5394573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction models for groundwater quality parameters using a multiple linear regression (MLR): a case study of Kermanshah, Iran","authors":"Parisa Dargahi, Simin Nasseri, Mahdi Hadi, Ramin Nabizadeh Nodehi, Amir Hossein Mahvi","doi":"10.1007/s40201-022-00836-9","DOIUrl":"10.1007/s40201-022-00836-9","url":null,"abstract":"<div><p>Groundwater is one of the major sources of exploitation in arid and semiarid regions. Spatial and temporal quality distribution is an important factor in groundwater management. Thus for protecting groundwater quality, data production on spatial and temporal distribution is essential. The present study has applied multiple linear regression (MLR) techniques to predict the fitness of groundwater quality in Kermanshah province, west of Iran. The parameters examined were Total dissolved solids (TDS), Total hardness (TH), Sodium adsorption ratio (SAR). the quality variables were modelled by MLR. Finally, the performance of the models was assessed using the coefficient of determination (R<sup>2</sup>). The relationship between parameters by MLR showed that TDS and water quality parameters in semi-deep wells and aquifers had a strong positive correlation (r = 0.94, r = 0.98) and there was a strong positive significant correlation between SAR and water quality parameters in deep wells and aquifers (r = 0.98, r = 0.99). Also, TH and water quality parameters in all water sources had a strong positive correlation (r = 1). The MLR model could serve as an alternative and cost-effective tool for groundwater quality prediction where there is limitation in laboratory facilities, trained expertise or time. Consequently, the usefulness of these linear regression equations in predicting the groundwater quality is an approach, which can be applied in any other locations.\u0000</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"63 - 71"},"PeriodicalIF":3.4,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00836-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4885955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tarek Sayad, Fawzia Ibrahim Moursy, Attia M. El-Tantawi, Mohamed Saad, Mostafa Morsy
{"title":"Assessment the impact of different fuels used in cement industry on pollutant emissions and ambient air quality: a case study in Egypt","authors":"Tarek Sayad, Fawzia Ibrahim Moursy, Attia M. El-Tantawi, Mohamed Saad, Mostafa Morsy","doi":"10.1007/s40201-022-00844-9","DOIUrl":"10.1007/s40201-022-00844-9","url":null,"abstract":"<div><p>This study aims to assess the impact of using different fuels in Egyptian Titan Alexandria Portland Cement Company on emissions and concentrations of pollutants (Total suspended particles (TSP), nitrogen dioxide (NO<sub>2</sub>), and sulfur dioxide (SO<sub>2</sub>)) and their influence on ambient air quality during the period 2014–2020 using AERMOD dispersion model. The results showed that changing the fuel from natural gas in 2014 to coal mixed with alternative fuels (Tire-Derived Fuel (TDF), Dried Sewage Sludge (DSS), and Refuse Derived Fuels (RDF)) in 2015–2020 caused fluctuating variations in pollutant emissions and concentrations. The highest and lowest maximum concentrations of TSP occurred in 2017 and 2014 respectively, where the TSP is positively correlated with coal, RDF, and DSS and negatively correlated with natural gas, diesel, and TDF. Also, the lowest and highest maximum NO<sub>2</sub> concentrations were detected in 2020 and 2016 followed by 2017 respectively, where NO<sub>2</sub> is positively correlated with DSS and negatively correlated with TDF and varies with diesel, coal, and RDF. Moreover, the maximum concentrations of SO<sub>2</sub> were the lowest in 2018 and highest in 2016 followed by 2017 because of its considerable positive correlation with natural gas and DSS and negative correlation with RDF, TDF, and coal. Generally, it was found that increasing the percentage of TDF and RDF with decreasing the percentage of DSS, diesel, and coal will reduce pollutant emissions and concentrations and enhance ambient air quality.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"107 - 121"},"PeriodicalIF":3.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00844-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5161575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and preparation of amino-functionalized core-shell magnetic nanoparticles for photocatalytic application and investigation of cytotoxicity effects","authors":"Zahra Sabouri, Mohammad Sabouri, Samaneh Sadat Tabrizi Hafez Moghaddas, Majid Darroudi","doi":"10.1007/s40201-022-00842-x","DOIUrl":"10.1007/s40201-022-00842-x","url":null,"abstract":"<div><p>The goal of the current paper was a synthesis of Amino-functionalized Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> core-shell magnetic nanoparticles as a unique efficient photocatalyst for removing organic dyes from aqueous environments. The magnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> core-shell was produced by a silica source to avoid aggregation by the co-precipitation method. Next, functionalized by using 3-Aminopropyltriethoxysilane (APTES) via a post-synthesis link. The chemical structure, magnetic properties, and shape of the manufactured photocatalyst (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-NH<sub>2</sub>) were described by XRD, VSM, FT-IR, FESEM, EDAX, and DLS/Zeta potential analyses. The XRD findings approved the successful synthesis of nanoparticles. The photocatalytic activity of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-NH<sub>2</sub> nanoparticles was examined for MB degradation and the degradation performance was about 90% in the optimum conditions. Also, the cytotoxicity of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> core-shell, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-NH<sub>2</sub> nanoparticles was examined on CT-26 cells using an MTT assay, the finding has shown that nanoparticles can be used for inhibiting cancer cells.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"93 - 105"},"PeriodicalIF":3.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00842-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5160646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of organophosphorus malathion pesticide from aqueous solutions using nano-polypropylene-titanium dioxide composite: Equilibrium, kinetics and Optimization studies","authors":"Mehrnoosh Gholami, Zohre Mosakhani, Asma Barazandeh, Hamid Karyab","doi":"10.1007/s40201-022-00826-x","DOIUrl":"10.1007/s40201-022-00826-x","url":null,"abstract":"<div><h3>Purpose</h3><p>The purpose of this study was to investigate the applicability of the adsorption process of a persistent organophosphorus pesticide (malathion) from aqueous solutions by using titanium dioxide- polypropylene nanocomposite (Nano-PP/TiO<sub>2</sub>).</p><h3>Methods</h3><p>The structure of Nano-PP/TiO<sub>2</sub> was specified by field emission scanning electron microscopes (FE-SEM), fourier-transform infrared spectroscopy (FTIR), brunauer-emmett-teller (BET), and transmission electron microscope (TEM) technologies. Response surface methodology (RSM) was applied to optimize the adsorption of malathion onto Nano-PP/TiO<sub>2</sub> and investigates the effects of various experimental parameters including contact time (5-60 min), adsorbent dose (0.5-4 g/l) and initial malathion concentration (5-20000 mg/l). Extraction and analysis of malathion were performed by dispersive liquid-liquid microextraction (DLLME) coupled with a gas chromatography, coupled with flame ionization detector (GC/FID).</p><h3>Results</h3><p>The isotherms obtained for Nano-PP/TiO<sub>2</sub> revealed that it was a mesoporous material with a total pore volume of 2.06 cm<sup>3</sup>/g, average pore diameters of 2.48 nm and a surface area of 51.52 m<sup>2</sup>/g. The obtained results showed that the Langmuir type 2 was the best-fitted model for delegating the equilibrium data of isotherm studies with adsorption capacity of 7.43 mg/g, and pseudo-second-order type 1 for kinetic model. The optimized conditions to achieve the maximum removal (96%) were at a malathion concentration of 7.13 mg/L, contact time of 52 min and adsorbent dose of 0.5 g/L.</p><h3>Conclusion</h3><p>Due to its efficient and appropriate function in adsorbing malathion from aqueous solutions, it was revealed that Nano-PP/TiO<sub>2</sub> can be used as an effective adsorbent as well as in further studies.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"35 - 45"},"PeriodicalIF":3.4,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00826-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4948169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial indicators in municipal solid waste compost and their fate after land application of compost","authors":"Sepideh Sadeghi, Amir Hossein Nafez, Mahnaz Nikaeen, Farzaneh Mohammadi, Davood Jafary Tady, Maryam Hatamzadeh","doi":"10.1007/s40201-022-00841-y","DOIUrl":"10.1007/s40201-022-00841-y","url":null,"abstract":"<div><h2>\u0000Abstract\u0000</h2><div><p>Despite the extensive agricultural use of municipal solid waste (MSW) compost, there is little information about microbial characteristics of the MSW compost and fate of microorganisms following land application. This study was designed to determine the microbial quality and germination index (GI) of the MSW compost as well as fate of indicator microorganisms after application of MSW compost. The results showed a high fraction of samples are immature (GI < 80). In 27% and 16% of samples fecal coliforms and <i>Salmonella</i> were detected in a range exceeding the recommended value for unrestricted application of compost, respectively. HAdV was also detected in 62% of samples. Fecal enterococci were detected with relatively high concentrations in all samples and showed higher survival rate than other indicators in land-applied MSW compost. The results showed that climate condition significantly contributed to the decline of indicator bacteria in land-applied compost. The results highlight the need for further quality monitoring of compost to ensure that its application does not lead to environmental or human health problems. Furthermore, because of the high concentrations and high survival rate of enterococci in compost samples, they can be specifically proposed as an indicator microorganism for MSW compost quality monitoring.</p></div></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"85 - 92"},"PeriodicalIF":3.4,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00841-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4511245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}