{"title":"A new synthesis of 7H-pyrrolo[3,2-f]quinoxaline derivatives by a one-pot, three-component reaction","authors":"Xue Wang, Ji Li, Jia-Yan Liu, Dong-Sheng Chen","doi":"10.1007/s12039-024-02332-z","DOIUrl":"10.1007/s12039-024-02332-z","url":null,"abstract":"<div><p>An acid-catalyzed three-component reaction of arylglyoxals, quinoxalin-6-amine and 4-hydroxycoumarin is described, leading to the synthesis of new functionalized 7<i>H</i>-pyrrolo[3,2-<i>f</i>]quinoxaline derivatives with good yields. It has high synthetic efficiency and operational simplicity, and only water was generated as a byproduct.</p><h3>Graphical abstract</h3><p>A new procedure for the synthesis of pyrrolo[3,2-<i>f</i>]quinoxaline derivatives.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reena Ravindran, Minitha R, Shiji Fazil, A. Sarau Devi
{"title":"Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione","authors":"Reena Ravindran, Minitha R, Shiji Fazil, A. Sarau Devi","doi":"10.1007/s12039-024-02307-0","DOIUrl":"10.1007/s12039-024-02307-0","url":null,"abstract":"<p>New ruthenium(II) complex containing cyanide anions has been isolated from the hydrazonochromandione ligand 3-(2-(4-chlorophenyl)hydrazono)chroman-2,4-dione in the presence of acetonitrile along with triethylamine from Ru(III) salt. This method is a one-pot synthetic approach for preparing dicyano Ru(II) complex. Using physicochemical and spectral techniques, the synthesized compound [Ru(CN)<sub>2</sub>L<sub>2</sub>]·2Et<sub>3</sub>N<sup>+</sup>H was structurally described. The monoanionic bidentate character of the hydrazone ligand and coordination through carbonyl oxygen and deprotonated hydrazonochroman-2,4-dione nitrogen atom were revealed by single crystal X-ray diffraction investigation of the Ru(II) complex. Ru(II) complex is a member of the P21/n space group and monoclinic system. Ru(II) chelate rings were stabilized by intermolecular hydrogen bonds and <i>π</i>–<i>π</i> stacking interactions between ligands and triethylammonium molecules. A single phase with rod-like morphologies is imaged by SEM. The quasi-reversible single electron transfer property is exhibited by the Ru(II) complex.</p>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AgNO3-anchored Prussian blue-derived porous Ag/α-Fe2O3 heterostructure with enhanced electrochemical sensing performance towards methylparaben","authors":"Ho Van Minh Hai, Van Cuong Nguyen, The Ky Vo","doi":"10.1007/s12039-024-02323-0","DOIUrl":"10.1007/s12039-024-02323-0","url":null,"abstract":"<div><p>Herein, we report on facile fabricating sensors based on Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocubes harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO<sub>3</sub> at different temperatures (300~500°C) and exploiting them for electrochemical sensing of methylparaben (MP). The Ag/Fe<sub>2</sub>O<sub>3</sub> nanocubes had crystallite sizes ranging from 300~400 nm and incorporated reduced Ag nanoparticles (AgNPs) ranging from 10.5~15.3 nm. Notably, the harvested Ag/Fe<sub>2</sub>O<sub>3</sub> composites were constructed hetero-interfacial Ag–Fe<sub>2</sub>O<sub>3</sub> structures inside the porous <i>α</i>-Fe<sub>2</sub>O<sub>3</sub> cubes with interconnected pore matrix resulting from the thermal conversion of PSB. The carbon glass electrode (GCE) coated with an Ag/Fe<sub>2</sub>O<sub>3</sub> sensor prepared at 400°C showed the highest oxidation peak at 0.84 V towards MP. In addition, the Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub>@GCE interface achieved an excellent detection of MP with a low LOD of 0.14<i> µ</i>M and a linear response range of 10~38 <i>µ</i>M. The sensor also depicted good selectivity and stability during 10 days, demonstrating a suitable sensor for detecting and analyzing MP. This study provides a facile strategy for constructing a porous Ag/Fe<sub>2</sub>O<sub>3</sub> heterostructural composite as an efficient electrochemical sensing material.</p><h3>Graphical abstract</h3><p>Sensors based on Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocube harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO<sub>3</sub> and exploited for the electrochemical sensing of methylparaben. The results suggest that Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocube crystals comprise heterointerfaces and interconnected pores. The Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub>@GCE interface exhibited excellent detection of methylparaben, good stability, and selectivity.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LED-based broadband cavity-enhanced spectrometer for high-sensitive optical detection of diacetyl in gas phase","authors":"Ardhendu Pal, Koushik Mondal, Soumen Mandal, Soumyadipta Chakraborty, Indrayani Patra, Manik Pradhan","doi":"10.1007/s12039-024-02324-z","DOIUrl":"10.1007/s12039-024-02324-z","url":null,"abstract":"<div><p>Diacetyl (C<sub>4</sub>H<sub>6</sub>O<sub>2</sub>) is an important organic diketone that is widely used as flavoring agent and food additive. It is toxic when inhaled or exposed to high concentrations and may lead to chronic respiratory disease and neurodegenerative disorders. But, a viable optical detection method for rapid and quantitative estimation of diacetyl molecules in gas phase does not currently exist. Here, we report the design and development of a simple, compact and cost-effective robust optical technique exploiting incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique for high-sensitive selective detection and quantitative estimation of gas-phase diacetyl levels in real-time using a visible light emitting diode (LED) operating at 450 nm. The IBBCEAS method demonstrates an effective optical-path length of 4.5 km within an optical cavity (Finesse ~15706) composed of two high-reflective mirrors. A typical detection limit of ~190 parts-per-billion (ppb) for diacetyl was achieved with an optimum acquisition time of ~4 s at an optimal cavity pressure of 100 Torr. LED-based diacetyl sensor system was optimized, calibrated and demonstrated for trace detection of gaseous diacetyl at the ppb levels in various food products and liquor samples as a few representative applications, thus paving the way for development of future optical monitors.</p><h3>Graphical abstract</h3><p>This work represents the development of a LED-based optical setup for the detection of diacetyl molecule in gas phase.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and characterization of a new coordination polymer of copper (II): Catalytic application for reductive degradation of dyes under dark","authors":"Aieshri Swargiary, Tanmoy Kumar Ghosh, Arunendu Mondal","doi":"10.1007/s12039-024-02313-2","DOIUrl":"10.1007/s12039-024-02313-2","url":null,"abstract":"<div><p>A new copper (II) coordination polymer [{Cu(TMDP)(2,3-pydc)}.2H<sub>2</sub>O]<sub><i>n</i></sub> <b>(A)</b> has been synthesized successfully by solvolysis method using ligands 4,4′-trimethylenedipyridine (TMDP) and 2,3-pyridinedicarboxylic acid (2,3-pydc). The structure of the synthesised coordination polymer is confirmed by the single crystal X-ray diffraction study and also supported by CHN analysis. FTIR, UV-visible spectroscopy, thermogravimetric analysis (TGA) and powder XRD study are used to characterize <b>A</b>. The polymer in aqueous solution is applied as effective catalyst for reductive degradation of methyl orange (MO) and Congo red (CR) dyes with reducing agent sodium borohydride (NaBH<sub>4</sub>) under dark. The detail study of the catalytic reaction and its kinetic study reveals 97% and 76% degradation of MO and CR with rate constants of 0.061 min<sup>−1</sup> and 0.005 min<sup>−1</sup>, respectively. This is the first example where a coordination polymer has been used for reductive degradation of dyes under dark condition.</p><h3>Graphical abstract</h3><p>A newly synthesized copper (II) coordination polymer [{Cu(TMDP)(2,3-pydc)}.2H<sub>2</sub>O]<sub>n</sub> (<b>A</b>) has been developed and studied by different analytical methods. The polymer (<b>A</b>) is then used as catalyst for degradation of anionic (MO and CR) dyes.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harun Khan, Aiswarya Kesh, Kothandaraman Ramanujam, Akhila Kumar Sahu
{"title":"Functionalized graphene nanofiber-based low-cost composite membrane for vanadium redox flow battery applications","authors":"Harun Khan, Aiswarya Kesh, Kothandaraman Ramanujam, Akhila Kumar Sahu","doi":"10.1007/s12039-024-02318-x","DOIUrl":"10.1007/s12039-024-02318-x","url":null,"abstract":"<p>Nafion has gained widespread recognition as the predominant membrane due to its good proton conductivity, robust chemical resistance, and commendable mechanical stability. However, due to its well-developed water channels, it has poor barrier properties toward vanadium ions. Herein, to reduce vanadium ions permeability across the membranes without compromising the proton conductivity, graphene nanofiber (Herringbone type, GNF-H) as a filler has been incorporated into the Nafion matrix to fabricate the composite membrane. The membranes were subjected to physiochemical characterization, vanadium ion permeability, electrochemical impedance spectroscopy, and galvanostatic charge-discharge at different current densities. Vanadium permeability has significantly reduced in the 0.75% and 1% GNF-H composite membranes. Composite membranes (0.5%, 0.75%, and 1% GNF-H) showed a capacity of ~18.2, ~18.9, and ~16.8 Ah L<sup>−1</sup> at 100 mA cm<sup>−2</sup>, respectively, whereas Nafion<sup>TM</sup> 117 exhibited only ~16.3 Ah L<sup>−1</sup> capacity at the same current density. The peak power of the cells consisted of 0.5, 0.75, and 1% GNF-H composite membrane and Nafion<sup>TM</sup> 117 is ~538, ~507, ~465 and 388 mW cm<sup>−2</sup>, respectively. The present study concludes that applying Nafion/GNF-H in the VRFB system can be a promising strategy to reduce the vanadium ion permeation, cost-cutting and improve the VRFB performance.</p><p>GNF-H serves as a physical barrier to vanadium ion movement within the Nafion matrix, potentially lengthening the transport path of vanadium ions through the membrane. This reduces crossover and enhances membrane selectivity while not impeding proton transport, thereby enhancing the performance of VRFB.</p>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E A Mukhanova, P D Kuznetsova, P V Medvedev, C Y Cárdenas Rodriguez, E R Kolomenskaya, A N Bulgakov, S V Chapek, O E Polozhentsev, A V Soldatov
{"title":"Microfluidic synthesis of calcium tungstate CaWO4","authors":"E A Mukhanova, P D Kuznetsova, P V Medvedev, C Y Cárdenas Rodriguez, E R Kolomenskaya, A N Bulgakov, S V Chapek, O E Polozhentsev, A V Soldatov","doi":"10.1007/s12039-024-02322-1","DOIUrl":"10.1007/s12039-024-02322-1","url":null,"abstract":"<div><p>Nowadays, microfluidic synthesis has many advantages over bulk synthesis. By controlling the flow into the microfluidic chip, we can synthesize nanoparticles with defined and precise characteristics. A continuous microfluidics synthesis of CaWO<sub>4</sub> was conducted to obtain nanoparticles with a Scheelite structure approximately 10 nm in diameter. The CaWO<sub>4</sub> nanoparticles were characterized using elemental composition, chemical structure, particle size distribution, and morphology. Calcium tungstate and its derivatives are well known for their optical properties and have great potential for medical applications. The small diameter of nanoparticles allows the synthesis of composites on their basic for theranostics in cancer treatment. Our work indicates the potential opportunity of a continuous microfluidics technique for the rapid fabrication of Scheelite-type tungstate.</p><h3>Graphical abstract</h3><p>Microfluidic synthesis of CaWO<sub>4</sub> nanoparticles with a Scheelite structure using a continuous process yielding 10 nm particles. Characterization includes elemental composition, structure, and morphology. This substance has potential applications in photodynamic therapy because of its optical properties.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-Li Qin, Xue-Qing Ding, Yu-Qin Li, Yi-Hao Yu, Fan Xu, Zhou Rong
{"title":"Copper-catalyzed synthesis of 3-substituted isocoumarins from 2-halogenation benzoic acid and alkynes","authors":"Xiao-Li Qin, Xue-Qing Ding, Yu-Qin Li, Yi-Hao Yu, Fan Xu, Zhou Rong","doi":"10.1007/s12039-024-02311-4","DOIUrl":"10.1007/s12039-024-02311-4","url":null,"abstract":"<div><p>A method for synthesizing 3-substituted isocoumarins under copper catalysis involves the cyclization reaction of <i>o</i>-bromobenzoic acid and alkynes in DMSO, with the assistance of K<sub>2</sub>CO<sub>3</sub> at 100 °C. It exhibits a wide range of substrate compatibility and excellent tolerance towards diverse functional groups.</p><h3>Graphical abstract</h3><p>A method for synthesizing 3-substituted isocoumarins under copper catalysis involves the cyclization reaction of o-bromobenzoic acid and alkynes in DMSO, with the assistance of K<sub>2</sub>CO<sub>3</sub> at 100 °C. This reaction demonstrates a synthesis yield of 8–81% for 3-substituted isocoumarins.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cu/H–ZSM-5: A highly active and selective catalyst for the production of γ-valerolactone from biomass-derived levulinic acid","authors":"Vijayanand Perupogu, Suresh Babu Gadamani, Rajendiran Rajesh, Putra Kumar Balla, Shyamala Pulipaka, Srinivasa Rao Pinapati, Lingaiah Nakka","doi":"10.1007/s12039-024-02317-y","DOIUrl":"10.1007/s12039-024-02317-y","url":null,"abstract":"<div><p>Investigating alternative energy sources is now crucial since the topic of climate action is growing in significance. One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called <i>γ</i>-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to <i>γ</i>-valerolactone using various copper-supported H–ZSM-5 catalysts with different Cu loadings (2–30 wt%) that were synthesized using a simple impregnation technique. The synthesized catalyst's morphological and chemical structure was examined using a variety of techniques, including XRD, N<sub>2</sub> adsorption-desorption, TPR, TPD–NH<sub>3</sub>, and N<sub>2</sub>O titration. Overall, at 265°C and 30 hours of time on stream (TOS), 5 Cu/H–ZSM-5 showed the best conversion (87%) and selectivity (83%).</p><h3>Graphical Abstract</h3><p>One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called <i>γ</i>-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to <i>γ</i>-valerolactone using copper-supported H–ZSM-5 catalysts with different Cu loadings.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shilpika Khanikar, Prince Joshi, Anamika Sharma, Labet Bankynmaw Marpna, Tara Rangrime A Sangma, Rene Barbie Browne, Shunan Kaping, Philippe Helissey, Renu Tripathi, Jai N Vishwakarma
{"title":"Ultrasound-assisted synthesis and structure elucidation of novel quinoline-pyrazolo[1,5-a]pyrimidine hybrids for anti-malarial potential against drug-sensitive and drug-resistant malaria parasites and molecular docking","authors":"Shilpika Khanikar, Prince Joshi, Anamika Sharma, Labet Bankynmaw Marpna, Tara Rangrime A Sangma, Rene Barbie Browne, Shunan Kaping, Philippe Helissey, Renu Tripathi, Jai N Vishwakarma","doi":"10.1007/s12039-024-02294-2","DOIUrl":"10.1007/s12039-024-02294-2","url":null,"abstract":"<div><p>Novel <i>(E)</i>-3-(dimethylamino)-1-(quinolin-3-yl)prop-2-en-1-one and <i>(E)</i>-3-(dimethylamino)-1-(quinolin-3-yl)but-2-en-1-one <b>(2)</b> were synthesized in excellent yields by reacting 3-acetylquinoline with DMF-DMA and DMA-DMA respectively. Subsequently, <b>2</b> were used as the precursors for the synthesis of 3-(pyrazolo[1,5-<i>a</i>]pyrimidin-7-yl)quinolines and 3-(5-methylpyrazolo[1,5-<i>a</i>]pyrimidin-7-yl)quinolines (<b>4</b>). All the synthesized compounds were subjected to structure elucidation and evaluated for their antiparasitic potential with special reference to their anti-malarial properties. The <i>in-vitro</i> studies of the synthesized compounds revealed moderate anti-malarial efficacy for compounds <b>4b</b>, <b>4c</b>, <b>4d</b>, <b>4k</b>, <b>4l</b> and <b>4m</b>. Compounds <b>4g</b> and <b>4i</b> showed highest activity displaying IC<sub>50</sub> values of 2.10 and 2.77 <span>(mu)</span>M, respectively, for the chloroquine-sensitive strain of <i>P</i>. falciparum, and 4.26 and 2.87 <span>(mu)</span>M, respectively, for the chloroquine-resistant strain. The <i>in-vitro</i> cytotoxicity of the compounds showed CC<sub>50</sub> as >500 <i>µ</i>M and thus, found to be safe. Molecular docking of the novel series of ligand <b>4a</b>–<b>4n</b> against the target protein <i>P. falciparum Pf</i>LDH enzyme target (PDB ID 1LDG) revealed good binding energies ranging from –8.06 to –11.02 kcal/mol with low inhibition constants summed up as 1.04, 473.55, 352.51, 290.9, 437.86, 1.23, 41.18, 26.81, 162.76, 300.38, 70.2, 29.84, 4.14, 8.4 <i>µ</i>M, respectively. The lower the inhibition constant (<i>µ</i>M), the greater is the binding affinity and lower the medication required to inhibit the activity of the target receptor.</p><h3>Graphical abstract</h3><p><i>(E)</i>-3-(dimethylamino)-1-(quinolin-3-yl)but-2-en-1-one with 3-aminopyrazole under ultrasonic irradiation in aqueous medium yielded novel 3-(pyrazolo[1,5-<i>a</i>]pyrimidin-7-yl)quinolines and 3-(5-methylpyrazolo[1,5-<i>a</i>]pyrimidin-7-yl)quinolines. Antimalarial studies against <i>Pf</i>3D7 strain resulted in moderate activity with compound <b>4g</b> showing highest activity. Molecular docking analysis of the compounds reveals the potentiality of the series to serve as antimalarial agents against CQ-sensitive (<i>Pf</i>3D7) and multi-drug-resistant (<i>Pf</i>K1).</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}