{"title":"CheSPI: chemical shift secondary structure population inference","authors":"Jakob Toudahl Nielsen, Frans A. A. Mulder","doi":"10.1007/s10858-021-00374-w","DOIUrl":"10.1007/s10858-021-00374-w","url":null,"abstract":"<div><p>NMR chemical shifts (CSs) are delicate reporters of local protein structure, and recent advances in random coil CS (RCCS) prediction and interpretation now offer the compelling prospect of inferring small populations of structure from small deviations from RCCSs. Here, we present CheSPI, a simple and efficient method that provides unbiased and sensitive aggregate measures of local structure and disorder. It is demonstrated that CheSPI can predict even very small amounts of residual structure and robustly delineate subtle differences into four structural classes for intrinsically disordered proteins. For structured regions and proteins, CheSPI provides predictions for up to eight structural classes, which coincide with the well-known DSSP classification. The program is freely available, and can either be invoked from URL www.protein-nmr.org as a web implementation, or run locally from command line as a python program. CheSPI generates comprehensive numeric and graphical output for intuitive annotation and visualization of protein structures. A number of examples are provided.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00374-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4755402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faustine Henot, Rime Kerfah, Ricarda Törner, Pavel Macek, Elodie Crublet, Pierre Gans, Matthias Frech, Olivier Hamelin, Jerome Boisbouvier
{"title":"Optimized precursor to simplify assignment transfer between backbone resonances and stereospecifically labelled valine and leucine methyl groups: application to human Hsp90 N-terminal domain","authors":"Faustine Henot, Rime Kerfah, Ricarda Törner, Pavel Macek, Elodie Crublet, Pierre Gans, Matthias Frech, Olivier Hamelin, Jerome Boisbouvier","doi":"10.1007/s10858-021-00370-0","DOIUrl":"10.1007/s10858-021-00370-0","url":null,"abstract":"<div><p>Methyl moieties are highly valuable probes for quantitative NMR studies of large proteins. Hence, their assignment is of the utmost interest to obtain information on both interactions and dynamics of proteins in solution. Here, we present the synthesis of a new precursor that allows connection of leucine and valine pro-<i>S</i> methyl moieties to backbone atoms by linear <sup>13</sup>C-chains. This optimized <sup>2</sup>H/<sup>13</sup>C-labelled acetolactate precursor can be combined with existing <sup>13</sup>C/<sup>2</sup>H-alanine and isoleucine precursors in order to directly transfer backbone assignment to the corresponding methyl groups. Using this simple approach leucine and valine pro-<i>S</i> methyl groups can be assigned using a single sample without requiring correction of <sup>1</sup>H/<sup>2</sup>H isotopic shifts on <sup>13</sup>C resonances. The approach was demonstrated on the N-terminal domain of human HSP90, for which complete assignment of Ala-β, Ile-δ<sub>1</sub>, Leu-δ<sub>2</sub>, Met-ε, Thr-γ and Val-γ<sub>2</sub> methyl groups was obtained.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00370-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5054641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple approach for reconstruction of non-uniformly sampled pseudo-3D NMR data for accurate measurement of spin relaxation parameters","authors":"Kyle W. East, Frank Delaglio, George P. Lisi","doi":"10.1007/s10858-021-00369-7","DOIUrl":"10.1007/s10858-021-00369-7","url":null,"abstract":"<div><p>We explain how to conduct a pseudo-3D relaxation series NUS measurement so that it can be reconstructed by existing 3D NUS reconstruction methods to give accurate relaxation values. We demonstrate using reconstruction algorithms IST and SMILE that this 3D approach allows lower sampling densities than for independent 2D reconstructions. This is in keeping with the common finding that higher dimensionality increases signal sparsity, enabling lower sampling density. The approach treats the relaxation series as ordinary 3D time-domain data whose imaginary part in the pseudo-dimension is zero, and applies any suitably linear 3D NUS reconstruction method accordingly. Best results on measured and simulated data were achieved using acquisitions with 9 to 12 planes and exponential spacing in the pseudo-dimension out to ~ 2 times the inverse decay time. Given these criteria, in typical cases where 2D reconstructions require 50% sampling, the new 3D approach generates spectra reliably at sampling densities of 25%.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00369-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4311132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantifying the effects of long-range 13C-13C dipolar coupling on measured relaxation rates in RNA","authors":"Lukasz T. Olenginski, Theodore K. Dayie","doi":"10.1007/s10858-021-00368-8","DOIUrl":"https://doi.org/10.1007/s10858-021-00368-8","url":null,"abstract":"<p>Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove <sup>13</sup>C-<sup>13</sup>C dipolar couplings that complicate <sup>13</sup>C relaxation analyses. While these phenomena are well documented for sites with adjacent <sup>13</sup>C nuclei (e.g. ribose C1′), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (>?2??) <sup>13</sup>C-<sup>13</sup>C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-<sup>13</sup>C/<sup>15</sup>N]-ATP or selectively [2-<sup>13</sup>C]-ATP labeled RNAs. Our simulations predict non-negligible <sup>13</sup>C-<sup>13</sup>C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R<sub>1</sub>) relaxation rates in [U-<sup>13</sup>C/<sup>15</sup>N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R<sub>1</sub> measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-<sup>13</sup>C/<sup>15</sup>N]-ATP or [2-<sup>13</sup>C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range <sup>13</sup>C-<sup>13</sup>C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R<sub>1</sub> rates in terms of motional models for large RNAs.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00368-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5589089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Xiao, Zhengfeng Zhang, Yongxiang Zhao, Jun Yang
{"title":"Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR","authors":"Hang Xiao, Zhengfeng Zhang, Yongxiang Zhao, Jun Yang","doi":"10.1007/s10858-021-00367-9","DOIUrl":"https://doi.org/10.1007/s10858-021-00367-9","url":null,"abstract":"<p>Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit <sup>13</sup>C-<sup>13</sup>C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077–8083]. The signals of alanine, serine, or threonine residues are selected out by selective <sup>13</sup>Cα-<sup>13</sup>Cβ double-quantum filtering (DQF). The <sup>13</sup>Cα-<sup>13</sup>Cβ correlations of alanine residues are selectively established with efficiency up to?~?1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly <sup>13</sup>C, <sup>15</sup>N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00367-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4844299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling","authors":"Gogulan Karunanithy, D. Flemming Hansen","doi":"10.1007/s10858-021-00366-w","DOIUrl":"https://doi.org/10.1007/s10858-021-00366-w","url":null,"abstract":"<p>In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple <sup>13</sup>C<sub>α</sub>-<sup>13</sup>C<sub>β</sub> couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00366-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4739617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastassia L. Kantsadi, Emma Cattermole, Minos-Timotheos Matsoukas, Georgios A. Spyroulias, Ioannis Vakonakis
{"title":"A COVID moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy","authors":"Anastassia L. Kantsadi, Emma Cattermole, Minos-Timotheos Matsoukas, Georgios A. Spyroulias, Ioannis Vakonakis","doi":"10.1007/s10858-021-00365-x","DOIUrl":"https://doi.org/10.1007/s10858-021-00365-x","url":null,"abstract":"<p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of the coronavirus disease 2019, for which no effective antiviral therapeutics are available. The SARS-CoV-2 main protease (M<sup>pro</sup>) is essential for viral replication and constitutes a promising therapeutic target. Many efforts aimed at deriving effective M<sup>pro</sup> inhibitors are currently underway, including an international open-science discovery project, codenamed COVID Moonshot. As part of COVID Moonshot, we used saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy to assess the binding of putative M<sup>pro</sup> ligands to the viral protease, including molecules identified by crystallographic fragment screening and novel compounds designed as M<sup>pro</sup> inhibitors. In this manner, we aimed to complement enzymatic activity assays of M<sup>pro</sup> performed by other groups with information on ligand affinity. We have made the M<sup>pro</sup> STD-NMR data publicly available. Here, we provide detailed information on the NMR protocols used and challenges faced, thereby placing these data into context. Our goal is to assist the interpretation of M<sup>pro</sup> STD-NMR data, thereby accelerating ongoing drug design efforts.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00365-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4598986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of 13C chemical shifts of β-sheet amyloid proteins and outer membrane proteins","authors":"Noah H. Somberg, Martin D. Gelenter, Mei Hong","doi":"10.1007/s10858-021-00364-y","DOIUrl":"https://doi.org/10.1007/s10858-021-00364-y","url":null,"abstract":"<p>Cross-β amyloid fibrils and membrane-bound β-barrels are two important classes of β-sheet proteins. To investigate whether there are systematic differences in the backbone and sidechain conformations of these two families of proteins, here we analyze the <sup>13</sup>C chemical shifts of 17 amyloid proteins and 7 β-barrel membrane proteins whose high-resolution structures have been determined by NMR. These 24 proteins contain 373 β-sheet residues in amyloid fibrils and 521 β-sheet residues in β-barrel membrane proteins. The <sup>13</sup>C chemical shifts are shown in 2D <sup>13</sup>C–<sup>13</sup>C correlation maps, and the amino acid residues are categorized by two criteria: (1) whether they occur in β-strand segments or in loops and turns; (2) whether they are water-exposed or dry, facing other residues or lipids. We also examine the abundance of each amino acid in amyloid proteins and β-barrels and compare the sidechain rotameric populations. The <sup>13</sup>C chemical shifts indicate that hydrophobic methyl-rich residues and aromatic residues exhibit larger static sidechain conformational disorder in amyloid fibrils than in β-barrels. In comparison, hydroxyl- and amide-containing polar residues have more ordered sidechains and more ordered backbones in amyloid fibrils than in β-barrels. These trends can be explained by steric zipper interactions between β-sheet planes in cross-β fibrils, and by the interactions of β-barrel residues with lipid and water in the membrane. These conformational trends should be useful for structural analysis of amyloid fibrils and β-barrels based principally on NMR chemical shifts.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00364-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4481541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NMR refinement and peptide folding using the GROMACS software","authors":"Anna Sinelnikova, David van der Spoel","doi":"10.1007/s10858-021-00363-z","DOIUrl":"https://doi.org/10.1007/s10858-021-00363-z","url":null,"abstract":"<p>Nuclear magnetic resonance spectroscopy is used routinely for studying the three-dimensional structures and dynamics of proteins and nucleic acids. Structure determination is usually done by adding restraints based upon NMR data to a classical energy function and performing restrained molecular simulations. Here we report on the implementation of a script to extract NMR restraints from a NMR-STAR file and export it to the GROMACS software. With this package it is possible to model distance restraints, dihedral restraints and orientation restraints. The output from the script is validated by performing simulations with and without restraints, including the <i>ab initio</i> refinement of one peptide.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00363-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5089861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Albert A. Smith, Nicolas Bolik-Coulon, Matthias Ernst, Beat H. Meier, Fabien Ferrage
{"title":"How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution?","authors":"Albert A. Smith, Nicolas Bolik-Coulon, Matthias Ernst, Beat H. Meier, Fabien Ferrage","doi":"10.1007/s10858-021-00361-1","DOIUrl":"https://doi.org/10.1007/s10858-021-00361-1","url":null,"abstract":"<p>The dynamics of molecules in solution is usually quantified by the determination of timescale-specific amplitudes of motions. High-resolution nuclear magnetic resonance (NMR) relaxometry experiments—where the sample is transferred to low fields for longitudinal (<i>T</i><sub>1</sub>) relaxation, and back to high field for detection with residue-specific resolution—seeks to increase the ability to distinguish the contributions from motion on timescales slower than a few nanoseconds. However, tumbling of a molecule in solution masks some of these motions. Therefore, we investigate to what extent relaxometry improves timescale resolution, using the “detector” analysis of dynamics. Here, we demonstrate improvements in the characterization of internal dynamics of methyl-bearing side chains by carbon-13 relaxometry in the small protein ubiquitin. We show that relaxometry data leads to better information about nanosecond motions as compared to high-field relaxation data only. Our calculations show that gains from relaxometry are greater with increasing correlation time of rotational diffusion.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00361-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4904961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}