{"title":"质子检测3D 2H-13C-1H MAS NMR的位点特异性蛋白甲基氘四极性模式","authors":"Ümit Akbey","doi":"10.1007/s10858-021-00388-4","DOIUrl":null,"url":null,"abstract":"<div><p>Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium’s large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional <sup>2</sup>H–<sup>13</sup>C–<sup>1</sup>H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl <sup>2</sup>H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint <sup>1</sup>H–<sup>15</sup>N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"76 1-2","pages":"23 - 28"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2H–13C–1H MAS NMR spectroscopy\",\"authors\":\"Ümit Akbey\",\"doi\":\"10.1007/s10858-021-00388-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium’s large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional <sup>2</sup>H–<sup>13</sup>C–<sup>1</sup>H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl <sup>2</sup>H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint <sup>1</sup>H–<sup>15</sup>N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"76 1-2\",\"pages\":\"23 - 28\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-021-00388-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00388-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
摘要
确定蛋白质的结构和动力学是了解蛋白质作用机制的关键。氘化蛋白已被用于通过质子检测获得高分辨率/灵敏度的核磁共振实验。这些方法利用1H, 13C和15N核进行化学位移色散或弛豫探针,尽管存在丰富的氘核。然而,由于与氘的大四极耦合相关的技术困难,缺乏一种高灵敏度的核磁共振方法来利用氘,例如确定特定位点的氘四极模式信息。在这里,我们提出了一种新的氘激发和质子检测的三维2H - 13c - 1h MAS NMR实验,首次利用氘核并获得了氘化蛋白上特定位点的甲基2H四极性模式。高分辨率指纹图谱1H-15N hsqc谱在三维空间上与各向异性氘四极张量相关。从一个模型的结果已被显示。
Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2H–13C–1H MAS NMR spectroscopy
Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium’s large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional 2H–13C–1H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl 2H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint 1H–15N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.