International Journal of Fracture最新文献

筛选
英文 中文
Enhanced solid element model with embedded strong discontinuity for representation of mesoscale quasi-brittle failure 用于表示中尺度准脆性破坏的嵌入式强不连续性增强型固体元素模型
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-06-05 DOI: 10.1007/s10704-024-00797-0
Matej Šodan, Andjelka Stanić, Mijo Nikolić
{"title":"Enhanced solid element model with embedded strong discontinuity for representation of mesoscale quasi-brittle failure","authors":"Matej Šodan,&nbsp;Andjelka Stanić,&nbsp;Mijo Nikolić","doi":"10.1007/s10704-024-00797-0","DOIUrl":"10.1007/s10704-024-00797-0","url":null,"abstract":"<div><p>This article presents a novel two-dimensional quadrilateral solid finite element model, enhanced by incompatible modes and embedded strong discontinuity for simulation of localized failure in quasi-brittle heterogeneous multi-phase materials. The focus of interest lies in the development of discontinuities and cracks induced by both tensile and compressive loads, considering mesoscale material constituents and very complex meshes. Multiple cracks are initiated within elements using local Gauss-point criteria for crack initiation. Rankine and Maximum shear stress criteria control the crack initiation, location, and orientation depending solely on the stress state within the finite element. The model identifies distinct clusters of cracked elements and merges them into continuous cracks. A tracking algorithm ensures crack continuity, eliminating spurious cracks ahead of the crack tip to prevent crack arrest and stress locking. This approach ensures the formation of various types of cracks within the constituents of composite materials and their spontaneous coalescence forming the final failure mechanisms. The constitutive model for the crack representation is the damage softening model, which accounts for opening and sliding behavior. The efficacy of the proposed model is demonstrated through numerical simulations of heterogeneous 3-phase and 4-phase composites subjected to both tensile and compressive load cases.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"1 - 25"},"PeriodicalIF":2.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM 利用 SFEM 和 CDM 基于微观结构预测多晶材料的疲劳寿命
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-29 DOI: 10.1007/s10704-024-00795-2
Deepak Sharma, I. V. Singh, Jalaj Kumar, Shahnawaz Ahmed
{"title":"Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM","authors":"Deepak Sharma,&nbsp;I. V. Singh,&nbsp;Jalaj Kumar,&nbsp;Shahnawaz Ahmed","doi":"10.1007/s10704-024-00795-2","DOIUrl":"10.1007/s10704-024-00795-2","url":null,"abstract":"<div><p>Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"265 - 284"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of crack orientation on the mode I fracture resistance of pinewood 裂纹走向对松木 I 型断裂抗力的影响
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-29 DOI: 10.1007/s10704-024-00798-z
Marek Romanowicz, Maciej Grygorczuk
{"title":"The effect of crack orientation on the mode I fracture resistance of pinewood","authors":"Marek Romanowicz,&nbsp;Maciej Grygorczuk","doi":"10.1007/s10704-024-00798-z","DOIUrl":"10.1007/s10704-024-00798-z","url":null,"abstract":"<div><p>The fracture resistance of pinewood under mode I loading is investigated experimentally for different crack plane orientations and the crack propagation direction parallel to longitudinal cells. Experiments are conducted on double cantilever beams using a digital image correlation system to evaluate the crack tip opening displacement. The compliance based beam method is used to determine the energy release rate at various crack lengths. The decomposition of crack propagation into the pre-peak and post-peak propagations is proposed to find the fracture energy contributions from individual toughening mechanisms in pinewood. The cohesive strengths measured in the experiments are confirmed by comparison with the tensile strengths obtained from separate tests performed on pinewood. An analytical model for evaluating the fracture process zone is used to validate the experimental results. The difference between the fracture energy values in different crack propagation systems is explained by using X-ray microtomography images of the fracture surfaces.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"27 - 48"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00798-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking 评估 Zircaloy-4 燃料棒包壳管的断裂韧性:延迟氢化物裂纹的影响
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-17 DOI: 10.1007/s10704-024-00781-8
Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson
{"title":"Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking","authors":"Pierrick François,&nbsp;Tom Petit,&nbsp;Quentin Auzoux,&nbsp;David Le Boulch,&nbsp;Isabela Zarpellon Nascimento,&nbsp;Jacques Besson","doi":"10.1007/s10704-024-00781-8","DOIUrl":"10.1007/s10704-024-00781-8","url":null,"abstract":"<div><p>Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, <span>(K_{I_text {DHC}})</span> and <span>(K_{I_text {C}})</span>, respectively: (i) constant load tests at 150 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C; (ii) monotonic tests at 25 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 <span>(^{circ })</span>C (<span>(K_{I_text {DHC}} in left[ 7.2;9.2right] )</span> MPa<span>(sqrt{text {m}})</span>), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC (<span>(K_{I_text {C}} in left[ 16.9;19.7 right] )</span> MPa<span>(sqrt{text {m}})</span>), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"51 - 72"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the special issue on failure mechanism in advanced materials and structures 先进材料和结构的失效机理特刊简介
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-17 DOI: 10.1007/s10704-024-00793-4
Zengtao Chen, Minghao Zhao, Cunfa Gao, Efstathios Theotokoglou
{"title":"Introduction to the special issue on failure mechanism in advanced materials and structures","authors":"Zengtao Chen,&nbsp;Minghao Zhao,&nbsp;Cunfa Gao,&nbsp;Efstathios Theotokoglou","doi":"10.1007/s10704-024-00793-4","DOIUrl":"10.1007/s10704-024-00793-4","url":null,"abstract":"","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"101 - 102"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue crack growth behavior of a nickel-based superalloy under turbine standard spectrum loads 涡轮机标准频谱载荷下镍基超级合金的疲劳裂纹增长行为
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-17 DOI: 10.1007/s10704-024-00794-3
Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha
{"title":"Fatigue crack growth behavior of a nickel-based superalloy under turbine standard spectrum loads","authors":"Sharanagouda G. Malipatil,&nbsp;N. Nagarajappa,&nbsp;Ramesh Bojja,&nbsp;N. Jagannathan,&nbsp;Anuradha N. Majila,&nbsp;D. Chandru Fernando,&nbsp;M. Manjuprasad,&nbsp;C. M. Manjunatha","doi":"10.1007/s10704-024-00794-3","DOIUrl":"10.1007/s10704-024-00794-3","url":null,"abstract":"<div><p>In this investigation, the growth behavior of a crack in a nickel-based superalloy under a turbine standard load sequence was determined by experimental, analytical, and computational methods. In the first experimental approach, ASTM standard compact tension (CT) test specimens were fabricated and fatigue crack growth (FCG) tests were conducted in a universal test machine under cold-TURBISTAN, a turbine standard spectrum load sequence. In the second analytical method, after rain-flow cycle counting of the cold-TURBISTAN sequence, the crack growth was estimated for each counted cycle from the crack growth law. The accumulated crack extension for each block of loading was thus estimated to determine the FCG behavior. In the third computational approach, a CT specimen containing an initial crack was modeled and the FCG behavior was predicted under cold-TURBISTAN spectrum load sequence using FRANC3D. The FCG trend predicted by analytical and computational methods was almost similar to the observed experimental behavior. The predicted FCG life was conservative with a life ratio ranging from 0.9 to 0.95.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"253 - 264"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary element method: cells with embedded discontinuity modeling the fracture process zone in 3D failure analysis 边界元法:在三维失效分析中用嵌入式不连续单元模拟断裂过程区
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-16 DOI: 10.1007/s10704-024-00785-4
A. P. Chaves, R. G. Peixoto, R. P. Silva
{"title":"Boundary element method: cells with embedded discontinuity modeling the fracture process zone in 3D failure analysis","authors":"A. P. Chaves,&nbsp;R. G. Peixoto,&nbsp;R. P. Silva","doi":"10.1007/s10704-024-00785-4","DOIUrl":"10.1007/s10704-024-00785-4","url":null,"abstract":"<div><p>Damage and failure in quasi-brittle materials such as rocks, concrete, and ceramics, have a complex non-linear behavior due to their heterogeneous character and the development of a fracture process zone (FPZ), formed by micro-cracking around the tip of an induced or pre-existing flaw. A softening behavior is observed in the FPZ, and the linear elastic fracture mechanic (LEFM) cannot correctly reproduce the stress field ahead of the crack tip. The existence of the FPZ may be the intrinsic cause of the size effect. An appropriate modeling of this process zone is mandatory to reproduce accurately the failure propagation and consequently, the structural behavior. Different from most of the domain numerical techniques, the boundary element method (BEM) requires (besides the boundary division into elements) only the discretization of a small region where dissipative effects occur. Cells with embedded continuum strong discontinuity approach (CSDA), placed in the region where the crack is supposed to occur, are capable of capturing the transition of regimes in the failure zone. Numerical bifurcation analysis, based on the singularity of the localization tensor, is used to determine the end of the continuum regime. Weak and strong discontinuity regimes are associated with diffuse micro-cracks (strain discontinuity) and macro-crack (displacement discontinuity). A variable bandwidth model is used during the weak discontinuity regime to represent the advance of micro-cracks density and their coalescence. Continuum and discrete cohesive isotropic damage models are used to describe the softening behavior. Analysis of three-dimensional problems with single crack in standard and mixed fracture modes, using this transitional approach and the BEM cells is firstly presented in this work. Experimental reference results are used to attest the capability of the approach in reproducing the structural behavior during crack propagation. Some necessary advances required for its applications for general complex structural problems are pointed out.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"107 - 132"},"PeriodicalIF":2.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of a cracked harmonic substrate under a rigid punch 刚性冲床下的谐波裂纹基板分析
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-13 DOI: 10.1007/s10704-024-00782-7
Hailiang Ma, Yueting Zhou, Xu Wang, Xing Li, Shenghu Ding
{"title":"Analysis of a cracked harmonic substrate under a rigid punch","authors":"Hailiang Ma,&nbsp;Yueting Zhou,&nbsp;Xu Wang,&nbsp;Xing Li,&nbsp;Shenghu Ding","doi":"10.1007/s10704-024-00782-7","DOIUrl":"10.1007/s10704-024-00782-7","url":null,"abstract":"<div><p>The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"73 - 86"},"PeriodicalIF":2.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of post-heat treatment with super β transus temperature on the fatigue behaviour of LPBF processed Ti6Al4V 超 β 转子温度后热处理对 LPBF 加工 Ti6Al4V 疲劳行为的影响
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-08 DOI: 10.1007/s10704-024-00784-5
Akshay Pathania, Anand Kumar Subramaniyan, Nagesha Bommanahalli Kenchappa
{"title":"Influence of post-heat treatment with super β transus temperature on the fatigue behaviour of LPBF processed Ti6Al4V","authors":"Akshay Pathania,&nbsp;Anand Kumar Subramaniyan,&nbsp;Nagesha Bommanahalli Kenchappa","doi":"10.1007/s10704-024-00784-5","DOIUrl":"10.1007/s10704-024-00784-5","url":null,"abstract":"<div><p>This paper investigates the fatigue behaviour of laser powder bed fusion (LPBF) processed Ti6Al4V samples under three build orientations. The post-heat treatment (PHT-1050 °C) was carried out. The microstructural characterization was performed using optical microscopy, X-ray diffraction SEM and EDS techniques. The tensile test and high cycle fatigue tests were performed. The PHT performed at 1050 °C exhibited Widmanstatten microstructure consisting of a higher volume fraction of elongated β and a small amount of α. PHT samples’ ductility was ~ 67%, 40% and 177% higher than the as-printed samples under horizontal, inclined and vertical orientations. Interestingly, the fatigue lives of PHT samples at higher stress levels were higher and nearly isotropic in all three build orientations than the as-printed samples due to enhanced ductility and fewer critical pores. Further strong correlation between PHT samples and ductility was established. Moreover, there was a marginal improvement in fatigue limit due to PHT at 1050 °C compared to as-printed samples.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"345 - 361"},"PeriodicalIF":2.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep laser melting as controlled fragmentation method for multi-purpose projectiles 深度激光熔化作为多用途射弹的受控破片方法
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2024-05-06 DOI: 10.1007/s10704-024-00792-5
G. G. Goviazin, B. Vizan
{"title":"Deep laser melting as controlled fragmentation method for multi-purpose projectiles","authors":"G. G. Goviazin,&nbsp;B. Vizan","doi":"10.1007/s10704-024-00792-5","DOIUrl":"10.1007/s10704-024-00792-5","url":null,"abstract":"<div><p>A controlled fragmentation method, by deep laser melting, for a multi-purpose projectile (penetrator) is presented, using a full-sized projectile with 1100 mm long, 148 mm diameter, and 17.8 mm wall thickness. Effects on penetration and fragmentation performance, for various laser melting parameters, are explored through penetration and fragmentation field tests. It is shown that it is possible to attain an optimal local microstructure, in the melted regions, that ensures a pre-defined fragmentation pattern upon explosion without compromising on the penetration capabilities.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"369 - 381"},"PeriodicalIF":2.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00792-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信