Enhanced solid element model with embedded strong discontinuity for representation of mesoscale quasi-brittle failure

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matej Šodan, Andjelka Stanić, Mijo Nikolić
{"title":"Enhanced solid element model with embedded strong discontinuity for representation of mesoscale quasi-brittle failure","authors":"Matej Šodan,&nbsp;Andjelka Stanić,&nbsp;Mijo Nikolić","doi":"10.1007/s10704-024-00797-0","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a novel two-dimensional quadrilateral solid finite element model, enhanced by incompatible modes and embedded strong discontinuity for simulation of localized failure in quasi-brittle heterogeneous multi-phase materials. The focus of interest lies in the development of discontinuities and cracks induced by both tensile and compressive loads, considering mesoscale material constituents and very complex meshes. Multiple cracks are initiated within elements using local Gauss-point criteria for crack initiation. Rankine and Maximum shear stress criteria control the crack initiation, location, and orientation depending solely on the stress state within the finite element. The model identifies distinct clusters of cracked elements and merges them into continuous cracks. A tracking algorithm ensures crack continuity, eliminating spurious cracks ahead of the crack tip to prevent crack arrest and stress locking. This approach ensures the formation of various types of cracks within the constituents of composite materials and their spontaneous coalescence forming the final failure mechanisms. The constitutive model for the crack representation is the damage softening model, which accounts for opening and sliding behavior. The efficacy of the proposed model is demonstrated through numerical simulations of heterogeneous 3-phase and 4-phase composites subjected to both tensile and compressive load cases.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"1 - 25"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00797-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel two-dimensional quadrilateral solid finite element model, enhanced by incompatible modes and embedded strong discontinuity for simulation of localized failure in quasi-brittle heterogeneous multi-phase materials. The focus of interest lies in the development of discontinuities and cracks induced by both tensile and compressive loads, considering mesoscale material constituents and very complex meshes. Multiple cracks are initiated within elements using local Gauss-point criteria for crack initiation. Rankine and Maximum shear stress criteria control the crack initiation, location, and orientation depending solely on the stress state within the finite element. The model identifies distinct clusters of cracked elements and merges them into continuous cracks. A tracking algorithm ensures crack continuity, eliminating spurious cracks ahead of the crack tip to prevent crack arrest and stress locking. This approach ensures the formation of various types of cracks within the constituents of composite materials and their spontaneous coalescence forming the final failure mechanisms. The constitutive model for the crack representation is the damage softening model, which accounts for opening and sliding behavior. The efficacy of the proposed model is demonstrated through numerical simulations of heterogeneous 3-phase and 4-phase composites subjected to both tensile and compressive load cases.

Abstract Image

Abstract Image

用于表示中尺度准脆性破坏的嵌入式强不连续性增强型固体元素模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信