International Journal of Fracture最新文献

筛选
英文 中文
Understanding regularized crack initiation through the lens of finite fracture mechanics 从有限断裂力学的角度理解正则化裂纹起裂
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-16 DOI: 10.1007/s10704-024-00837-9
Aurelien Doitrand, Gergely Molnár
{"title":"Understanding regularized crack initiation through the lens of finite fracture mechanics","authors":"Aurelien Doitrand,&nbsp;Gergely Molnár","doi":"10.1007/s10704-024-00837-9","DOIUrl":"10.1007/s10704-024-00837-9","url":null,"abstract":"<div><p>As a remedy to pathological sharp crack configurations such as strong singularities or anti-plane shear cracks, where crack initiation is driven solely by energy, a regularized crack description can be adopted to study crack initiation. The nucleation of a regularized crack at a V-notch is studied using the coupled criterion through matched asymptotic expansions. The process zone around the crack is described by crack regularization usually employed in phase-field models. The effective crack length increases with increasing regularization length so that the incremental energy release rate decreases, which in turn increases the critical generalized stress intensity factor at initiation. Decreasing incremental energy release rate is also obtained with increasing Poisson’s ratio. For a given material characteristic length, it is shown that the initiation crack length only depends on the V-notch angle and Poisson’s ratio. For a given geometry and Poisson’s ratio, the initiation length is proportional to the regularization length. The proposed description of regularized crack initiation shows good correspondence to the generalized stress intensity factor obtained by phase-field calculation, the only difference being in the description of the process zone prior to crack initiation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to measure fracture toughness of soft materials: a comparison of six different approaches using blood clot as a model material 如何测量软材料的断裂韧性:使用血凝块作为模型材料的六种不同方法的比较
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-13 DOI: 10.1007/s10704-024-00820-4
Matthew J. Lohr, Grace N. Bechtel, Berkin Dortdivanlioglu, Manuel K. Rausch
{"title":"How to measure fracture toughness of soft materials: a comparison of six different approaches using blood clot as a model material","authors":"Matthew J. Lohr,&nbsp;Grace N. Bechtel,&nbsp;Berkin Dortdivanlioglu,&nbsp;Manuel K. Rausch","doi":"10.1007/s10704-024-00820-4","DOIUrl":"10.1007/s10704-024-00820-4","url":null,"abstract":"<div><p>Soft materials are an important class of materials. They play critical roles both in nature, in the form of soft tissues, and in industrial applications. Quantifying their mechanical properties is an important part of understanding and predicting their behavior, and thus optimizing their use. However, there are often no agreed upon standards for how to do so. This also holds true for quantifying their fracture toughness; that is, their resistance to crack propagation. The goal of our work is to fill this knowledge gap using blood clot as a model material. In total, we compared three general approaches, some with multiple different implementations. The first approach is based on Griffith’s definition of the critical energy release rate. The second approach makes use of the J-Integral. The last approach uses cohesive zones. We applied these approaches to 12 pure shear experiments with notched samples (some approaches were supplemented with unnotched samples). Finally, we compared these approaches by their intra- and inter-approach variability, the complexity of their implementation, and their computational cost. Overall, we found that the simplest method was also the most consistent and the least costly one: the Griffith-based approach, as proposed by Rivlin and Thomas in 1953.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ characterisation of dynamic fracture in (Al_2O_3) using ultra-fast X-ray phase contrast radioscopy: effects of porosity and crack speed 使用超快速x射线相衬放射镜对(Al_2O_3)动态裂缝的原位表征:孔隙率和裂纹速度的影响
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-13 DOI: 10.1007/s10704-024-00816-0
Q. Henry, J.-B. Kopp, L. Le Barbenchon, J. Girardot, B. Lukić, A. Cohen, A. Cosculluela, P. Viot
{"title":"In situ characterisation of dynamic fracture in (Al_2O_3) using ultra-fast X-ray phase contrast radioscopy: effects of porosity and crack speed","authors":"Q. Henry,&nbsp;J.-B. Kopp,&nbsp;L. Le Barbenchon,&nbsp;J. Girardot,&nbsp;B. Lukić,&nbsp;A. Cohen,&nbsp;A. Cosculluela,&nbsp;P. Viot","doi":"10.1007/s10704-024-00816-0","DOIUrl":"10.1007/s10704-024-00816-0","url":null,"abstract":"<div><p>The dynamic fracture properties of porous ceramics were studied using single bunch synchrotron X-ray phase contrast imaging. The modified brazilian geometry was used to initiate and propagate a pure mode I crack. The specimen was compressed using the Split Hopkinson bars at strain rates of the order of <span>(10^2)</span> s<span>(^{-1})</span>. Main cracks were isolated for four different grades of <span>(Al_2O_3)</span>, one dense alumina, and three porous grades with <span>(20~%)</span> to <span>(60~%)</span> porosity. The maximum measured crack velocities for three grades is of the order of <span>(0.6c_R)</span> and <span>(0.4c_R)</span> for the most porous. The fracture energy was estimated using a FE numerical simulation to quantify the influence of inertial effects induced by crack propagation. The results show that these inertial effects are far from negligible (up to <span>(80~%)</span> of the stored energy) and that the dynamic correction factors known from the literature tend to overestimate the fracture energy. The values obtained vary from 22 J/m<span>(^2)</span> for the densest to 5 J/m<span>(^2)</span> for the most porous.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00816-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element simulation of rate-dependent damage in elastomers 弹性体速率相关损伤的有限元模拟
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-13 DOI: 10.1007/s10704-024-00818-y
Pinyi Wang, Shawn R. Lavoie, Tian Tang
{"title":"Finite element simulation of rate-dependent damage in elastomers","authors":"Pinyi Wang,&nbsp;Shawn R. Lavoie,&nbsp;Tian Tang","doi":"10.1007/s10704-024-00818-y","DOIUrl":"10.1007/s10704-024-00818-y","url":null,"abstract":"<div><p>Predicting the mechanical response and damage evolution of elastomers under large deformation is of great significance in engineering applications. In this work, a finite element (FE) scheme is formulated and used to simulate rate-dependent damage in elastomers. While based on the theoretical model of Lavoie et al. (Extrem Mech Lett 8:114–124, 2016) and maintaining the key features such as kinetics of chain scission and polydispersity, the FE scheme presented here includes the consideration of finite compressibility. Both implicit and explicit algorithms are derived and implemented as user subroutines in ABAQUS. Validated against existing numerical results as well as experimental data on homogeneous deformation, the capability of the FE scheme to solve problems involving inhomogeneous deformation is further explored by simulating samples with pre-existing defects. The numerical results can successfully capture several interesting phenomena, such as crack blunting, stress reduction near defect caused by damage, and rate-dependent damage evolution. Good agreement is also found with experimental data on the strain field near a crack tip.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial cavitation during peeling of soft viscoelastic adhesives 软粘弹性胶粘剂剥离过程中的界面空化
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-12 DOI: 10.1007/s10704-024-00834-y
Xingwei Yang, Huiqi Shi, Yuan Qi, Rong Long
{"title":"Interfacial cavitation during peeling of soft viscoelastic adhesives","authors":"Xingwei Yang,&nbsp;Huiqi Shi,&nbsp;Yuan Qi,&nbsp;Rong Long","doi":"10.1007/s10704-024-00834-y","DOIUrl":"10.1007/s10704-024-00834-y","url":null,"abstract":"<div><p>Peel tests are commonly used to characterize the performance of adhesive tapes. The force required to peel a tape from a substrate depends on not only interface adhesion but also mechanics of the tape. Typically, adhesive tapes consist of a stiff backing film and a layer of adhesive material that is soft and viscoelastic. While mechanics of the backing film has been extensively studied, mechanics of the soft adhesive layer is less understood. In this work, finite element simulations are carried out to study large deformation of the soft adhesive layer during 90-degree peeling and its implication on the peel force. We find that debonding can occur ahead of the peel front when the peel front is still adhered to the substrate. This phenomenon, referred to as “interfacial cavitation”, causes the peel front to advance in a stepwise manner despite that a constant peeling velocity is prescribed. Consequently, the peel force follows an oscillatory history resembling the “stick–slip” behavior widely observed in peel tests. Further investigations reveal that interfacial cavitation originates from a non-monotonic distribution of interfacial traction ahead of the peel front. Moreover, emergence of interfacial cavitation can be controlled by three factors: interfacial slip, adhesive layer thickness and peeling velocity. These results can provide insights towards designing adhesive tapes with desired adhesion performance or release mechanisms.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of notch root radius on apparent fracture toughness of Ti6Al4V alloy: experiments and simulations 缺口根半径对Ti6Al4V合金表观断裂韧性的影响:实验与模拟
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-11 DOI: 10.1007/s10704-024-00838-8
Akash Kumar, Jyoti S. Jha, Sushil K. Mishra, Parag Tandaiya
{"title":"Effect of notch root radius on apparent fracture toughness of Ti6Al4V alloy: experiments and simulations","authors":"Akash Kumar,&nbsp;Jyoti S. Jha,&nbsp;Sushil K. Mishra,&nbsp;Parag Tandaiya","doi":"10.1007/s10704-024-00838-8","DOIUrl":"10.1007/s10704-024-00838-8","url":null,"abstract":"<div><p>Ti6Al4V is a widely used titanium alloy known for its excellent combination of mechanical properties, corrosion resistance, and biocompatibility. However, to ensure its effectiveness in various applications, it is important to understand the mechanical and fracture behavior of the alloy in the presence of a notch. In the present study, the effect of notch root radius on mode I fracture toughness of Ti6Al4V alloys with a nearly bimodal microstructure has been investigated. Fracture toughness tests were conducted on compact tension (CT) specimens with five different notch root radii. The experimental results demonstrate that the apparent fracture toughness, <span>(K_{IA})</span>, increases linearly with the square root of the notch root radius. Further to elucidate the results, a 2D elastoplastic finite element analysis is performed on the CT specimens using cohesive zone model. The simulation results are in good agreement with the experimental data. The study also reveals that the apparent fracture toughness is independent of the notch root radius below a critical value, estimated to be approximately <span>(50 mu m)</span>. Finally, the scanning electron microscopy of the fracture surfaces has been examined. The micrographs reveal void coalescence and dimple regions indicating the ductile nature of the fracture process.\u0000</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incremental closure method to estimate changes in contact stress distributions for partially closed fatigue cracks in mode I loading 估算I型加载条件下部分闭合疲劳裂纹接触应力分布变化的增量闭合法
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-11 DOI: 10.1007/s10704-024-00833-z
Henry H. M. Moldenhauer, Stephen D. Holland, Ashraf Bastawros
{"title":"Incremental closure method to estimate changes in contact stress distributions for partially closed fatigue cracks in mode I loading","authors":"Henry H. M. Moldenhauer,&nbsp;Stephen D. Holland,&nbsp;Ashraf Bastawros","doi":"10.1007/s10704-024-00833-z","DOIUrl":"10.1007/s10704-024-00833-z","url":null,"abstract":"<div><p>Crack closure is the phenomenon of fatigue cracks experiencing compressive contact stresses between crack faces, even under no remote load. Applied remote loads alter the distribution of contact stresses and opening displacements along the crack plane. A nondestructive evaluation technique, vibrothermography, motivated calculating these distributions as a function of remote load, to model crack motion during the vibrothermographic process. The proposed incremental closure method estimates such distributions using a two-stage superposition of crack tip solutions. The first, superimposes a continuum of crack tip solutions over a short, explicit peeling increment at the effective crack tip. The second, superimposes these increments over a range of effective crack tip positions. This approach provides a fast, straightforward way to characterize the peeling open of partially closed cracks. This method can be applied inversely to determine the preexisting closure state. Predictions from this method compare well with finite element simulations of the crack peeling process.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing complex protein-solvent interactions using environment-controlled crack-growth experiments 利用环境控制的裂纹生长实验评估复杂的蛋白质-溶剂相互作用
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-10 DOI: 10.1007/s10704-024-00826-y
Tristan Baumberger, Olivier Ronsin
{"title":"Assessing complex protein-solvent interactions using environment-controlled crack-growth experiments","authors":"Tristan Baumberger,&nbsp;Olivier Ronsin","doi":"10.1007/s10704-024-00826-y","DOIUrl":"10.1007/s10704-024-00826-y","url":null,"abstract":"<div><p>The modulation of protein functionality, i.e. their ability to fold/unfold, by adding low molecular weight substances to the “natural” solvent water is an important issue in biochemistry. Taking advantage of the unique ability of gelatin to self assemble into elastic networks via partial renaturation of the native collagen protein, we propose to recast the issue into a fracture mechanics one. We describe a method to decipher the effect of alcohols as cosolvents on gelatin networks from the shift of fracture energy in response to an environmental shock. After suitable subtraction of the viscous dissipation we are able characterize the solvent/network interaction by the relative shift of the free energy characteristic of the crosslinked<span>(rightarrow )</span>dismanteled transition of the network associated to its fracture. Using two alcohols, methanol and glycerol, we show that our method is able to accounts for their known contrasting effects on proteins. We briefly discuss the nature of the energy of interaction. In addition we unveil an open issue regarding the origin and consequence of the poroelastic solvent flow associated to crack propagation in hydrogels.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology of fracture profiles and toughness: competition between inter and transgranular fracture in two dimensional brittle solids 断口形貌与韧性:二维脆性固体中晶间断裂与穿晶断裂的竞争
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-09 DOI: 10.1007/s10704-024-00825-z
Retam Paul, Venkitanarayanan Parameswaran, Sumit Basu
{"title":"Morphology of fracture profiles and toughness: competition between inter and transgranular fracture in two dimensional brittle solids","authors":"Retam Paul,&nbsp;Venkitanarayanan Parameswaran,&nbsp;Sumit Basu","doi":"10.1007/s10704-024-00825-z","DOIUrl":"10.1007/s10704-024-00825-z","url":null,"abstract":"<div><p>Two dimensional intergranular brittle cracks propagating through a microstructured material produce fracture profiles which, at scales larger than the microstructural length scale, are anti-persistent and close to directed random walks with Hurst exponent <span>(sim 0.5)</span>. The extent of intergranularity is controlled by the ratio of the toughness of the grain boundaries to that of the grain interior. However, experiments suggest [e.g. Ponson et al. (Phys Rev Lett 97(12), 2006)] that even when transgranular crack propagation is possible, the fracture profile is still close to a random walk. In this work, generating fracture profiles in a material with an idealised honeycomb microstructure using a phase field based model of crack propagation, we show that the competition between inter and transgranular fracture manifests in a manner that is more nuanced than what the experiments suggest. While the fracture profile is indeed always anti-persistent, transgranularity resulting from toughening the grains leads to profiles that can have roughness exponents much lower than 0.5. Moreover, in such cases, the overall toughness of the specimen scales with the Hurst exponent. On the other hand, transgranularity resulting from weakening the grain boundaries, without changing the toughness of the grain interior, always lead to fracture profiles close to the random walk.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of laminar structure on fracture propagation and proppant transportation in continental shale oil reservoirs with multiple lithological-combination 层流结构对多岩性组合陆相页岩油藏裂缝扩展及支撑剂运移的影响
IF 2.2 3区 工程技术
International Journal of Fracture Pub Date : 2025-01-08 DOI: 10.1007/s10704-024-00831-1
Xiaohuan Zhang, Shicheng Zhang, Yushi Zou, Jianmin Li
{"title":"Effects of laminar structure on fracture propagation and proppant transportation in continental shale oil reservoirs with multiple lithological-combination","authors":"Xiaohuan Zhang,&nbsp;Shicheng Zhang,&nbsp;Yushi Zou,&nbsp;Jianmin Li","doi":"10.1007/s10704-024-00831-1","DOIUrl":"10.1007/s10704-024-00831-1","url":null,"abstract":"<div><p>To understand the effects of laminar structure on fracture propagation and proppant transportation intuitively, an improved true triaxial fracturing device with a proppant pumping unit was used to carry out sand-laden fracturing on shale oil reservoir samples with multiple lithological-combination and different laminar structures. Based on high-precision CT scanning technology and acoustic emission (AE) monitoring technology, the propagation mechanism of hydraulic fractures (HFs) and proppant transportation characteristics were analyzed, and the critical condition for lamina slip was proposed. The results show that laminas with initial width tend to be activated by fracturing fluid, resulting in diversion or offset. Closed laminas tend to be penetrated by HFs and are hardly activated by fracturing fluid. Rock with dense initial width laminas tends to form “#” shaped fractures interwoven with activated laminas and vertical fractures. In contrast, rock with closed laminas tends to form simple fractures dominated by vertical HFs. The width of HFs varies greatly from the perforation layer to the neighboring layer. As the difference in tensile strength between the interlayer and the perforated layer increases, the degree of decline in HF width significantly increases. Intensive AE activity was monitored at the intersection of vertical HFs and activated laminas, indicating that decreased fracture width causes proppants to bridge and block at the diversion and offset. Therefore, most proppants are filled in wide fractures near perforation, blocking the diversion and offset; there is almost no proppant in activated laminas. Reducing proppant diameter is conducive to placing the proppant in the activated laminas and interlayer HFs. Compared with placing 200 mesh and 120/140 mesh with similar fracture morphology samples, the proppant placement volume ratio of 400 mesh proppant placing samples increased by 7%. The findings significantly improve the scheme decision-making and parameter design of fracturing technology for thin interlayered shale oil reservoirs.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信