{"title":"The effect of crack orientation on the mode I fracture resistance of pinewood","authors":"Marek Romanowicz, Maciej Grygorczuk","doi":"10.1007/s10704-024-00798-z","DOIUrl":"10.1007/s10704-024-00798-z","url":null,"abstract":"<div><p>The fracture resistance of pinewood under mode I loading is investigated experimentally for different crack plane orientations and the crack propagation direction parallel to longitudinal cells. Experiments are conducted on double cantilever beams using a digital image correlation system to evaluate the crack tip opening displacement. The compliance based beam method is used to determine the energy release rate at various crack lengths. The decomposition of crack propagation into the pre-peak and post-peak propagations is proposed to find the fracture energy contributions from individual toughening mechanisms in pinewood. The cohesive strengths measured in the experiments are confirmed by comparison with the tensile strengths obtained from separate tests performed on pinewood. An analytical model for evaluating the fracture process zone is used to validate the experimental results. The difference between the fracture energy values in different crack propagation systems is explained by using X-ray microtomography images of the fracture surfaces.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"27 - 48"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00798-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson
{"title":"Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking","authors":"Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson","doi":"10.1007/s10704-024-00781-8","DOIUrl":"10.1007/s10704-024-00781-8","url":null,"abstract":"<div><p>Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, <span>(K_{I_text {DHC}})</span> and <span>(K_{I_text {C}})</span>, respectively: (i) constant load tests at 150 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C; (ii) monotonic tests at 25 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 <span>(^{circ })</span>C (<span>(K_{I_text {DHC}} in left[ 7.2;9.2right] )</span> MPa<span>(sqrt{text {m}})</span>), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC (<span>(K_{I_text {C}} in left[ 16.9;19.7 right] )</span> MPa<span>(sqrt{text {m}})</span>), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"51 - 72"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the special issue on failure mechanism in advanced materials and structures","authors":"Zengtao Chen, Minghao Zhao, Cunfa Gao, Efstathios Theotokoglou","doi":"10.1007/s10704-024-00793-4","DOIUrl":"10.1007/s10704-024-00793-4","url":null,"abstract":"","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"101 - 102"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha
{"title":"Fatigue crack growth behavior of a nickel-based superalloy under turbine standard spectrum loads","authors":"Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha","doi":"10.1007/s10704-024-00794-3","DOIUrl":"10.1007/s10704-024-00794-3","url":null,"abstract":"<div><p>In this investigation, the growth behavior of a crack in a nickel-based superalloy under a turbine standard load sequence was determined by experimental, analytical, and computational methods. In the first experimental approach, ASTM standard compact tension (CT) test specimens were fabricated and fatigue crack growth (FCG) tests were conducted in a universal test machine under cold-TURBISTAN, a turbine standard spectrum load sequence. In the second analytical method, after rain-flow cycle counting of the cold-TURBISTAN sequence, the crack growth was estimated for each counted cycle from the crack growth law. The accumulated crack extension for each block of loading was thus estimated to determine the FCG behavior. In the third computational approach, a CT specimen containing an initial crack was modeled and the FCG behavior was predicted under cold-TURBISTAN spectrum load sequence using FRANC3D. The FCG trend predicted by analytical and computational methods was almost similar to the observed experimental behavior. The predicted FCG life was conservative with a life ratio ranging from 0.9 to 0.95.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"253 - 264"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundary element method: cells with embedded discontinuity modeling the fracture process zone in 3D failure analysis","authors":"A. P. Chaves, R. G. Peixoto, R. P. Silva","doi":"10.1007/s10704-024-00785-4","DOIUrl":"10.1007/s10704-024-00785-4","url":null,"abstract":"<div><p>Damage and failure in quasi-brittle materials such as rocks, concrete, and ceramics, have a complex non-linear behavior due to their heterogeneous character and the development of a fracture process zone (FPZ), formed by micro-cracking around the tip of an induced or pre-existing flaw. A softening behavior is observed in the FPZ, and the linear elastic fracture mechanic (LEFM) cannot correctly reproduce the stress field ahead of the crack tip. The existence of the FPZ may be the intrinsic cause of the size effect. An appropriate modeling of this process zone is mandatory to reproduce accurately the failure propagation and consequently, the structural behavior. Different from most of the domain numerical techniques, the boundary element method (BEM) requires (besides the boundary division into elements) only the discretization of a small region where dissipative effects occur. Cells with embedded continuum strong discontinuity approach (CSDA), placed in the region where the crack is supposed to occur, are capable of capturing the transition of regimes in the failure zone. Numerical bifurcation analysis, based on the singularity of the localization tensor, is used to determine the end of the continuum regime. Weak and strong discontinuity regimes are associated with diffuse micro-cracks (strain discontinuity) and macro-crack (displacement discontinuity). A variable bandwidth model is used during the weak discontinuity regime to represent the advance of micro-cracks density and their coalescence. Continuum and discrete cohesive isotropic damage models are used to describe the softening behavior. Analysis of three-dimensional problems with single crack in standard and mixed fracture modes, using this transitional approach and the BEM cells is firstly presented in this work. Experimental reference results are used to attest the capability of the approach in reproducing the structural behavior during crack propagation. Some necessary advances required for its applications for general complex structural problems are pointed out.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"107 - 132"},"PeriodicalIF":2.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of a cracked harmonic substrate under a rigid punch","authors":"Hailiang Ma, Yueting Zhou, Xu Wang, Xing Li, Shenghu Ding","doi":"10.1007/s10704-024-00782-7","DOIUrl":"10.1007/s10704-024-00782-7","url":null,"abstract":"<div><p>The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"73 - 86"},"PeriodicalIF":2.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of post-heat treatment with super β transus temperature on the fatigue behaviour of LPBF processed Ti6Al4V","authors":"Akshay Pathania, Anand Kumar Subramaniyan, Nagesha Bommanahalli Kenchappa","doi":"10.1007/s10704-024-00784-5","DOIUrl":"10.1007/s10704-024-00784-5","url":null,"abstract":"<div><p>This paper investigates the fatigue behaviour of laser powder bed fusion (LPBF) processed Ti6Al4V samples under three build orientations. The post-heat treatment (PHT-1050 °C) was carried out. The microstructural characterization was performed using optical microscopy, X-ray diffraction SEM and EDS techniques. The tensile test and high cycle fatigue tests were performed. The PHT performed at 1050 °C exhibited Widmanstatten microstructure consisting of a higher volume fraction of elongated β and a small amount of α. PHT samples’ ductility was ~ 67%, 40% and 177% higher than the as-printed samples under horizontal, inclined and vertical orientations. Interestingly, the fatigue lives of PHT samples at higher stress levels were higher and nearly isotropic in all three build orientations than the as-printed samples due to enhanced ductility and fewer critical pores. Further strong correlation between PHT samples and ductility was established. Moreover, there was a marginal improvement in fatigue limit due to PHT at 1050 °C compared to as-printed samples.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"345 - 361"},"PeriodicalIF":2.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep laser melting as controlled fragmentation method for multi-purpose projectiles","authors":"G. G. Goviazin, B. Vizan","doi":"10.1007/s10704-024-00792-5","DOIUrl":"10.1007/s10704-024-00792-5","url":null,"abstract":"<div><p>A controlled fragmentation method, by deep laser melting, for a multi-purpose projectile (penetrator) is presented, using a full-sized projectile with 1100 mm long, 148 mm diameter, and 17.8 mm wall thickness. Effects on penetration and fragmentation performance, for various laser melting parameters, are explored through penetration and fragmentation field tests. It is shown that it is possible to attain an optimal local microstructure, in the melted regions, that ensures a pre-defined fragmentation pattern upon explosion without compromising on the penetration capabilities.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"369 - 381"},"PeriodicalIF":2.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00792-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frank W. DelRio, Todd Huber, Rex K. Jaramillo, E. David Reedy Jr., Scott J. Grutzik
{"title":"Interpreting test temperature and loading rate effects on the fracture toughness of polymer-metal interfaces via time–temperature superposition","authors":"Frank W. DelRio, Todd Huber, Rex K. Jaramillo, E. David Reedy Jr., Scott J. Grutzik","doi":"10.1007/s10704-024-00790-7","DOIUrl":"10.1007/s10704-024-00790-7","url":null,"abstract":"<div><p>In this letter, we present interfacial fracture toughness data for a polymer-metal interface where tests were conducted at various test temperatures <i>T</i> and loading rates <span>(dot{delta })</span>. An adhesively bonded asymmetric double cantilever beam (ADCB) specimen was utilized to measure toughness. ADCB specimens were created by bonding a thinner, upper adherend to a thicker, lower adherend (both 6061 T6 aluminum) using a thin layer of epoxy adhesive, such that the crack propagated along the interface between the thinner adherend and the epoxy layer. The specimens were tested at <i>T</i> from 25 to 65 °C and <span>(dot{delta })</span> from 0.002 to 0.2 mm/s. The measured interfacial toughness Γ increased as both <i>T</i> and <span>(dot{delta })</span> increased. For an ADCB specimen loaded at a constant <span>(dot{delta })</span>, the energy release rate <i>G</i> increases as the crack length <i>a</i> increases. For this reason, we defined rate effects in terms of the rate of change in the energy release rate <span>(dot{G})</span>. Although not rigorously correct, a formal application of time–temperature superposition (TTS) analysis to the Γ data provided useful insights on the observed dependencies. In the TTS-shifted data, Γ decreased and then increased for monotonically increasing <span>(dot{G})</span><i>.</i> Thus, the TTS analysis suggests that there is a minimum value of Γ<i>.</i> This minimum value could be used to define a lower bound in Γ when designing critical engineering applications that are subjected to <i>T</i> and <span>(dot{delta })</span> excursions.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"361 - 367"},"PeriodicalIF":2.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bing Yang, Shuancheng Wang, Jian Li, Shoune Xiao, Tao Zhu, Guangwu Yang
{"title":"Crack growth behavior of U71MnG rail steel under overload conditions described using a dislocation correction model","authors":"Bing Yang, Shuancheng Wang, Jian Li, Shoune Xiao, Tao Zhu, Guangwu Yang","doi":"10.1007/s10704-024-00789-0","DOIUrl":"10.1007/s10704-024-00789-0","url":null,"abstract":"<div><p>The single-peak overload test based on DIC technology was carried out in this study, and U71MnG steel was used to explore the influence of dislocation motion on crack propagation during overload. The changes in the shape and size of the plastic zone during the overload fatigue cycle are tracked and recorded, and the trends in the stress intensity factors of the Christopher–James–Patterson (CJP) and dislocation correction models are compared. The degree of influence of the dislocation motion on the variation in the stress intensity factors is evaluated, and the variation pattern of the plastic flow factor is derived (the amount of crack tip blunting, <i>ρ</i>). The results showed that the dislocation correction model increased the accuracy of the solution of the coefficient set, and the predicted size of the plastic zone of the correction model was more consistent with the experimental data. A better match with the crack tip was observed in the experimental plastic zone, the dislocation correction model error with the theoretical plastic zone fluctuates within 10%, whereas the CJP model can reach a maximum of 36.75%, demonstrating the insensitivity of the dislocation correction model. The plastic flow factor <i>ρ</i> follows the same pattern as that of the plastic zone area and stress intensity factor amplitude, <i>ρ</i> increases slowly with the increase of crack length before overload, <i>ρ</i> increases significantly after overload and then decreases sharply, and it recovers to be stable with the disappearance of the overload hysteresis effect of crack propagation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"345 - 359"},"PeriodicalIF":2.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}