Ni2MnGa磁性形状记忆合金断裂能评价的半经验模型

IF 2.5 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Glen J. D’Silva, Constantin Ciocanel
{"title":"Ni2MnGa磁性形状记忆合金断裂能评价的半经验模型","authors":"Glen J. D’Silva,&nbsp;Constantin Ciocanel","doi":"10.1007/s10704-025-00875-x","DOIUrl":null,"url":null,"abstract":"<div><p>Ni<sub>2</sub>MnGa magnetic shape memory alloys (MSMAs) experience the shape memory effect due to magnetic field-induced or mechanical stress-induced microstructure reorientation. However, crack initiation and propagation, influenced by the evolving twin microstructure under coupled magneto-mechanical loading, can significantly hamper its function in applications. This study presents a semi-empirical approach to evaluate fracture toughness and fracture energy in Ni<sub>2</sub>MnGa using Vickers microindentation. An improved analytical expression is proposed, extending the classical indentation-based fracture model to incorporate magneto-mechanical effects and microstructural evolution through a stress and field dependent exponential term. Experimental results confirm that the transverse magnetic field facilitates crack growth, decreasing the fracture energy, while axial compressive stress impedes crack growth, increasing the fracture energy of the alloy. The proposed empirical relationship provides configuration-specific fracture energy values for the alloy and contributes to identifying loading conditions least conducive to fracture initiation and growth in MSMAs.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-empirical model for fracture energy evaluation of a Ni2MnGa magnetic shape memory alloy\",\"authors\":\"Glen J. D’Silva,&nbsp;Constantin Ciocanel\",\"doi\":\"10.1007/s10704-025-00875-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ni<sub>2</sub>MnGa magnetic shape memory alloys (MSMAs) experience the shape memory effect due to magnetic field-induced or mechanical stress-induced microstructure reorientation. However, crack initiation and propagation, influenced by the evolving twin microstructure under coupled magneto-mechanical loading, can significantly hamper its function in applications. This study presents a semi-empirical approach to evaluate fracture toughness and fracture energy in Ni<sub>2</sub>MnGa using Vickers microindentation. An improved analytical expression is proposed, extending the classical indentation-based fracture model to incorporate magneto-mechanical effects and microstructural evolution through a stress and field dependent exponential term. Experimental results confirm that the transverse magnetic field facilitates crack growth, decreasing the fracture energy, while axial compressive stress impedes crack growth, increasing the fracture energy of the alloy. The proposed empirical relationship provides configuration-specific fracture energy values for the alloy and contributes to identifying loading conditions least conducive to fracture initiation and growth in MSMAs.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-025-00875-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00875-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Ni2MnGa磁性形状记忆合金(msma)由于磁场诱导或机械应力诱导的微观结构重定向而产生形状记忆效应。然而,在磁-力耦合载荷作用下,受孪晶组织演变的影响,裂纹的萌生和扩展会严重影响其应用功能。本研究提出了一种利用维氏微压痕评价Ni2MnGa材料断裂韧性和断裂能的半经验方法。提出了一种改进的解析表达式,扩展了经典的基于压痕的断裂模型,通过依赖应力场的指数项将磁-力学效应和微观组织演化纳入其中。实验结果表明,横向磁场有利于裂纹扩展,降低了断裂能,而轴向压应力阻碍了裂纹扩展,提高了合金的断裂能。所提出的经验关系为合金提供了特定形态的断裂能值,并有助于确定最不利于msma断裂萌生和扩展的加载条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A semi-empirical model for fracture energy evaluation of a Ni2MnGa magnetic shape memory alloy

A semi-empirical model for fracture energy evaluation of a Ni2MnGa magnetic shape memory alloy

Ni2MnGa magnetic shape memory alloys (MSMAs) experience the shape memory effect due to magnetic field-induced or mechanical stress-induced microstructure reorientation. However, crack initiation and propagation, influenced by the evolving twin microstructure under coupled magneto-mechanical loading, can significantly hamper its function in applications. This study presents a semi-empirical approach to evaluate fracture toughness and fracture energy in Ni2MnGa using Vickers microindentation. An improved analytical expression is proposed, extending the classical indentation-based fracture model to incorporate magneto-mechanical effects and microstructural evolution through a stress and field dependent exponential term. Experimental results confirm that the transverse magnetic field facilitates crack growth, decreasing the fracture energy, while axial compressive stress impedes crack growth, increasing the fracture energy of the alloy. The proposed empirical relationship provides configuration-specific fracture energy values for the alloy and contributes to identifying loading conditions least conducive to fracture initiation and growth in MSMAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信