考虑端面摩擦的缺口弯曲界面裂纹扩展耦合准则的应用

IF 2.5 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
María A. Herrera-Garrido, Vladislav Mantič, Dominique Leguillon
{"title":"考虑端面摩擦的缺口弯曲界面裂纹扩展耦合准则的应用","authors":"María A. Herrera-Garrido,&nbsp;Vladislav Mantič,&nbsp;Dominique Leguillon","doi":"10.1007/s10704-025-00866-y","DOIUrl":null,"url":null,"abstract":"<div><p>A novel computational analysis is developed to model mode II fracture of a bimaterial specimen in an End Notched Flexure test considering frictional sliding contact between the crack faces. In the Comninou contact model of interface cracks, the frictional contact zone at the tip of an interface crack between dissimilar linear elastic materials entails a stress singularity, which is weaker than the square root singularity. This weak singularity results in a zero Energy Release Rate (ERR) <span>\\(G_{II}=0\\)</span> in such cracks. Therefore, the classical Griffith criterion cannot be used to predict crack growth in this case. To address this challenging issue, a new approach based on the Coupled Criterion (CC) introduced by Leguillon (Eur. J. Mech. A/Solids 21, 61-72, 2002), which adopts the Finite Fracture Mechanics (FFM) hypothesis proposed by Hashin (J. Mech. Phys. Solids, 44, 1129-1145, 1996), is developed. The CC is satisfied when both the stress and incremental energy criteria are satisfied simultaneously. A novel CC implementation is required to address the nonlinearity caused by the frictional contact between the interface crack faces, particularly the frictional dissipation of energy during the growth of such interface cracks. The methodology developed involves Finite Element Analysis (FEA) to compute shear stress and relative displacements along the crack path, the change of the potential energy and the energy dissipated by friction. Finally, the implemented CC provides the critical load and finite crack advance at the initiation of crack propagation. The numerical study presented considers various combinations of isotropic materials and friction coefficients.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00866-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of the coupled criterion to interface crack growth in the end-notched flexure test considering friction between the crack faces\",\"authors\":\"María A. Herrera-Garrido,&nbsp;Vladislav Mantič,&nbsp;Dominique Leguillon\",\"doi\":\"10.1007/s10704-025-00866-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel computational analysis is developed to model mode II fracture of a bimaterial specimen in an End Notched Flexure test considering frictional sliding contact between the crack faces. In the Comninou contact model of interface cracks, the frictional contact zone at the tip of an interface crack between dissimilar linear elastic materials entails a stress singularity, which is weaker than the square root singularity. This weak singularity results in a zero Energy Release Rate (ERR) <span>\\\\(G_{II}=0\\\\)</span> in such cracks. Therefore, the classical Griffith criterion cannot be used to predict crack growth in this case. To address this challenging issue, a new approach based on the Coupled Criterion (CC) introduced by Leguillon (Eur. J. Mech. A/Solids 21, 61-72, 2002), which adopts the Finite Fracture Mechanics (FFM) hypothesis proposed by Hashin (J. Mech. Phys. Solids, 44, 1129-1145, 1996), is developed. The CC is satisfied when both the stress and incremental energy criteria are satisfied simultaneously. A novel CC implementation is required to address the nonlinearity caused by the frictional contact between the interface crack faces, particularly the frictional dissipation of energy during the growth of such interface cracks. The methodology developed involves Finite Element Analysis (FEA) to compute shear stress and relative displacements along the crack path, the change of the potential energy and the energy dissipated by friction. Finally, the implemented CC provides the critical load and finite crack advance at the initiation of crack propagation. The numerical study presented considers various combinations of isotropic materials and friction coefficients.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10704-025-00866-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-025-00866-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00866-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种考虑裂纹面间摩擦滑动接触的双材料端缺口弯曲试验II型断裂的计算分析方法。在Comninou界面裂纹接触模型中,不同线弹性材料在界面裂纹尖端处的摩擦接触区存在应力奇点,其应力奇点弱于平方根奇点。这种弱奇点导致这种裂缝中的能量释放率(ERR)为零\(G_{II}=0\)。因此,经典Griffith准则不能用于预测这种情况下的裂纹扩展。为了解决这一具有挑战性的问题,Leguillon(欧洲)提出了一种基于耦合准则(CC)的新方法。J.机甲。A/Solids 21, 61-72, 2002),采用Hashin (J. Mech. 2002)提出的有限断裂力学(FFM)假设。物理。固体,44,1129-1145,1996),已开发。当应力和增量能量同时满足时,CC满足。需要一种新的CC实现来解决由界面裂纹面之间的摩擦接触引起的非线性,特别是在这种界面裂纹扩展过程中能量的摩擦耗散。所开发的方法包括有限元分析(FEA)来计算沿裂纹路径的剪切应力和相对位移,势能的变化和摩擦耗散的能量。最后,实现的CC提供了裂纹扩展开始时的临界载荷和有限裂纹推进。所提出的数值研究考虑了各向同性材料和摩擦系数的各种组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the coupled criterion to interface crack growth in the end-notched flexure test considering friction between the crack faces

A novel computational analysis is developed to model mode II fracture of a bimaterial specimen in an End Notched Flexure test considering frictional sliding contact between the crack faces. In the Comninou contact model of interface cracks, the frictional contact zone at the tip of an interface crack between dissimilar linear elastic materials entails a stress singularity, which is weaker than the square root singularity. This weak singularity results in a zero Energy Release Rate (ERR) \(G_{II}=0\) in such cracks. Therefore, the classical Griffith criterion cannot be used to predict crack growth in this case. To address this challenging issue, a new approach based on the Coupled Criterion (CC) introduced by Leguillon (Eur. J. Mech. A/Solids 21, 61-72, 2002), which adopts the Finite Fracture Mechanics (FFM) hypothesis proposed by Hashin (J. Mech. Phys. Solids, 44, 1129-1145, 1996), is developed. The CC is satisfied when both the stress and incremental energy criteria are satisfied simultaneously. A novel CC implementation is required to address the nonlinearity caused by the frictional contact between the interface crack faces, particularly the frictional dissipation of energy during the growth of such interface cracks. The methodology developed involves Finite Element Analysis (FEA) to compute shear stress and relative displacements along the crack path, the change of the potential energy and the energy dissipated by friction. Finally, the implemented CC provides the critical load and finite crack advance at the initiation of crack propagation. The numerical study presented considers various combinations of isotropic materials and friction coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信