{"title":"Propagation of dust lower hybrid wave in dusty magneto dense plasma with polarization force effect","authors":"Aleena Yaseen, Zahid Mir, Bilal Ramzan","doi":"10.1007/s12648-024-03394-y","DOIUrl":"10.1007/s12648-024-03394-y","url":null,"abstract":"<div><p>Dust charge polarization effects on the propagation of dust lower hybrid wave is studied in dusty magneto-dense plasma. Quantum effects are incorporated due to Fermi’s degenerate pressure, Bohm tunneling potential and exchange correlation potential for electrons only. Magnetic effects are taken into account for ions, however, charged dust has polarizing effects on electrostatic wave propagation. The Quantum Hydrodynamic Model is used to construct a linear dispersion relation, and the findings are visually shown to highlight the electrostatic mode’s propagation and growth rate in the dense plasma environment.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1541 - 1546"},"PeriodicalIF":1.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Amudhavalli, P. Dharmaraja, M. Manikandan, R. RajeswaraPalanichamy, K. Iyakutti
{"title":"DFT study of electronic structure, magnetic and optical properties of Zr based full-Heusler alloys Zr2FeZ (Z = Al, Ga, In)","authors":"A. Amudhavalli, P. Dharmaraja, M. Manikandan, R. RajeswaraPalanichamy, K. Iyakutti","doi":"10.1007/s12648-024-03367-1","DOIUrl":"10.1007/s12648-024-03367-1","url":null,"abstract":"<div><p>Ab-initio calculations are carried out to analyze the half metallic and ferromagnetic property of full-Heusler alloys Zr<sub>2</sub>FeZ (Z = Al, Ga, In) with both Cu<sub>2</sub>MnAl (L2<sub>1</sub>) and Hg<sub>2</sub>CuTi (XA) structures. The ground state energy of both the structures predicted that ferromagnetic state is stable compared to the non- magnetic state. In the Cu<sub>2</sub>MnAl structure, these full Heusler alloys are metallic. The spin up state is found to be metallic and spin down state is observed as semiconducting in Hg<sub>2</sub>CuTi structure, which predicts that these alloys are half metallic in Hg<sub>2</sub>CuTi structure. The band structure of spin down state revealed that these alloys have an indirect band gap. For these Zr<sub>2</sub>FeZ (Z = Al, Ga, In) full Heusler alloys, the total magnetic moment calculated is to be around 1µB. The Slater Pauling rule <i>μ</i><sub><i>t</i></sub> = <i>Z</i><sub><i>t</i></sub> − 18 is obeyed. The optical parameters, such as, dielectric function, energy loss function, refractive index, reflectivity, absorption and extinction coefficients are reported. For spintronic devices, these new Zr-based Heusler alloys can be used.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1309 - 1318"},"PeriodicalIF":1.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bilal Ibrahim, Samia A. Saafan, R. E. El Shater, Maha K. Omar
{"title":"Room temperature AC properties and impedance analysis of Mg ferrite/polypyrrole (PPy) and Mg ferrite/reduced graphene oxide (rGO) composites","authors":"Bilal Ibrahim, Samia A. Saafan, R. E. El Shater, Maha K. Omar","doi":"10.1007/s12648-024-03372-4","DOIUrl":"10.1007/s12648-024-03372-4","url":null,"abstract":"<div><p>The auto-combustion sol–gel method has been used to synthesize a powder sample of MgFe<sub>2</sub>O<sub>4</sub> nanoparticles. Nanocomposites of Mg-ferrite/PPy and Mg-ferrite/rGO have been prepared by thorough physical mixing, with weight ratios of 20% PPy and 20% rGO, respectively. To have a full insight into the materials, their structural properties have been investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FT-IR). DC conductivity has been investigated too, and by comparing the results, it has been observed a significant increase in the DC conductivity of the Mg-ferrite/PPy composite sample compared to the corresponding Mg-ferrite/rGO sample, a finding that would potentially impact the composite’s applications. The discussion of the frequency dependence of ε′, σ<sub>ac</sub>, and tan(δ) in these composite samples revolves around the concept of Maxwell–Wagner interfacial polarization. The sample Cole–Cole plots show distinct areas where incomplete semicircles overlap, each representing a different conduction process. These semicircles correspond to two equivalent circuits of parallel resistor–capacitor (R–C) combinations connected in series. Finally, it could be concluded that the new nanocomposite samples of MgFe<sub>2</sub>O<sub>4</sub>/20% rGO and MgFe<sub>2</sub>O<sub>4</sub>/20% PPy show dielectric properties that may be a stimulus for more studies in future work, where they are expected to be promising candidates for supercapacitor applications.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1335 - 1345"},"PeriodicalIF":1.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12648-024-03372-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cosmic Evolution of the Kantowski-Sachs Universe in the Context of a Bulk Viscous String in Teleparallel Gravity","authors":"S. R. Bhoyar, Yash B. Ingole","doi":"10.1007/s12648-024-03405-y","DOIUrl":"https://doi.org/10.1007/s12648-024-03405-y","url":null,"abstract":"<p>In the present work, we analyzed the Kantowski-Sachs cosmological model and teleparallel gravity, where a bulk viscous fluid containing one-dimensional cosmic strings is the source for the energy−momentum tensor. To obtain the deterministic solution of the field equations, we employed the proportionality condition linking the shear scalar <span>((sigma ))</span> and the expansion scalar <span>((theta ))</span>, establishing a relationship between metric potentials. Another approach employed is the hybrid expansion law (HEL). The discussion focuses on the behavior of the accelerating universe concerning the specific choice of a nonlinear (or power law model) of teleparallel gravity <span>(f(T)=alpha T + beta T^m)</span>, where <i>T</i> is the torsion scalar, <span>(alpha)</span>, and <span>(beta)</span> are model parameters and <i>m</i> is restricted to greater than or equal to 2. The effective equation of the state parameter <span>((omega _{eff}))</span> of models will support the acceleration of the universe. We observed that the null and weak energy conditions are obeyed but violate the strong energy condition as per the present accelerating expansion. Under specific model parameter constraints, the universe shows a transition from a decelerating to an accelerating phase.\u0000</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"15 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amos V. Mathias, Jefta M. Sunzu, Jason M. Mkenyeleye
{"title":"Relativistic star with Bose–Einstein condensate core and polytropic envelope in Karmarkar regime","authors":"Amos V. Mathias, Jefta M. Sunzu, Jason M. Mkenyeleye","doi":"10.1007/s12648-024-03408-9","DOIUrl":"https://doi.org/10.1007/s12648-024-03408-9","url":null,"abstract":"<p>A new anisotropic star model with core-envelope division is generated. The star is assumed to have the core composed of Bose–Einstein Condensate matter and polytropic envelope. The interior space-time is considered to be static and spherically symmetric in relativistic framework. We specify one of the gravitational potentials <span>(e^{lambda })</span> and <span>(e^{nu })</span> and then apply the Karmarkar condition to generate our model. The model formulated is free from central singularities and is verified by various stability tests and energy conditions. The equilibrium of the present model is examined by analysing TOV-equation. Stellar masses and radii of compact fluid spheres consistent with observations including Vela X-1, PSRJ1903+327, Cen X-3 and Her X-1 have been generated by using this model. The profiles for the matter variables in the present model are well behaved. It is entrancing to note that a multi-layered star model with core admitting Bose–Einstein condensate equation of state in embedding setting is missing in the previous studies.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"20 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A A Shayanmoghadam, S N Hosseinimotlagh, S M R Reisosadat
{"title":"Heavy ion fusion simulation in key parameters optimization using multilayer fuel target and the effectiveness of ponderomotive force in ion acceleration","authors":"A A Shayanmoghadam, S N Hosseinimotlagh, S M R Reisosadat","doi":"10.1007/s12648-024-03397-9","DOIUrl":"https://doi.org/10.1007/s12648-024-03397-9","url":null,"abstract":"<p>In heavy ion fusion through Inertial Confinement Fusion, key points such as the production and driver energy delivery, fuel pellet design, physics of fuel pellet implosion, nuclear fusion reactor design, etc. are important. In this paper, we determine the stopping power, deposited energy, and the produced flux of secondary particles using the irradiation of multilayer spherical fuel pellet containing DT, D<sup>3</sup>He, and p<sup>11</sup>B by Pb and Cs heavy ion beams with energies of 8 and 10 GeV via GEANT4 simulation code, respectively. This work shows that by changing the selected heavy ion beam and its energy, as well as by changing the thickness of the layers and the type of ingredients in the fuel pellet, the obtained results change. The optimum gain of the deposited energy due to the choice of two selective heavy ion beams Pb and Cs that we obtained in this study, is related to the DT target compared to the two aneutronic targets of D<sup>3</sup>He and P<sup>11</sup>B in both energy 8 and 10 GeV. Finally, we use laser-plasma accelerator and determine theoretically the ponderomotive force.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"101 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical insight into the stability, magneto-electronic and thermodynamic properties of the new half-metallic ferromagnetic compounds Cr2RbZ (Z=Ge, In and Sb): probed by DFT","authors":"I. Asfour","doi":"10.1007/s12648-024-03413-y","DOIUrl":"https://doi.org/10.1007/s12648-024-03413-y","url":null,"abstract":"<p>The objective is to determine the structural, elastic, electronic, magnetic and thermodynamic properties of new half-metallic Cr<sub>2</sub>RbGe, Cr<sub>2</sub>RbIn and Cr<sub>2</sub>RbSb by using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory and implemented in WIEN2K code. The exchange–correlation potential is evaluated using the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) parameterization. Results on lattice parameters, bulk modulus, elastic, energy band gap and magnetic properties are reported. The elastic properties have shown the conformity of elastic constants with the stability criteria and the ductile nature of the compounds. The electronic band structures and density of states (DOS) of the compounds indicate they are half metallic because of the existence of the energy gap in the minority spin (DOS and band structure), which yields perfect spin polarization. These compounds Cr<sub>2</sub>RbZ (Z = Ge, In and Sb) are found to be Half-metallic in the spin-down channel and metallic in the spin-up channel, which leads to a spin polarization of 100% with a integer magnetic moment of 8.00 μ<sub>B</sub>, 8.00 μ<sub>B</sub> and 9.00 μ<sub>B</sub> for Cr<sub>2</sub>RbGe, Cr<sub>2</sub>RbIn and Cr<sub>2</sub>RbSb respectively, is mainly contributed by the Cr atom. The thermodynamic stability of these compounds are also determined. In addition the temperature and pressure effects on the bulk modulus, heat capacities, Debye temperatures and entropy are computed and discussed in details, temperature and pressure dependence of thermodynamic properties of these materials have been examined in the ranges (0–1000 K) and (0–16 GPa), respectively. All the aforementioned results indicate that this new compounds would be an ideal candidate in spintronic.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"35 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Akbar Khan, Yap Seong Ling, Zaira Zaman Chowdhury
{"title":"The role of wire-mesh electrodes on the mode transition of dielectric barrier discharge and its effects on the surface wettability of polycaprolactone","authors":"Ali Akbar Khan, Yap Seong Ling, Zaira Zaman Chowdhury","doi":"10.1007/s12648-024-03410-1","DOIUrl":"https://doi.org/10.1007/s12648-024-03410-1","url":null,"abstract":"<p>Atmospheric pressure dielectric barrier discharge is established to optimize discharge conditions, transitioning from filamentary mode to a stable discharge appearance. The uniform discharge, characterized by numerous beneficial properties, is advantageous for the modification of material surfaces. To generate the discharge, disc electrodes are linked to a variable high-power supply capable of delivering up to 42 kV at 50 Hz. Oxygen gas is introduced into the reactor at a consistent flow rate of 70 ml/min, with discharge gaps ranging from 1 to 4 mm. Two glass dielectrics, wire-meshes and Polyethylene Terephthalate films were utilized to cover both electrodes. The results indicate that filamentary discharge at 27 kV advances into a uniform discharge under atmospheric pressure. When Polycaprolactone was subjected to optimal discharge conditions, contact angle measurements showed a reduction as discharge time increased.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"180 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengyuan Guo, Kaixin Wu, Wenhui Yang, Yan Yang, Huilong Liu
{"title":"Circularly symmetric Hermite-Gaussian correlated Schell-model beam","authors":"Mengyuan Guo, Kaixin Wu, Wenhui Yang, Yan Yang, Huilong Liu","doi":"10.1007/s12648-024-03402-1","DOIUrl":"https://doi.org/10.1007/s12648-024-03402-1","url":null,"abstract":"<p>We introduce a novel class of random stationary, scalar source for producing far field with ring-shaped intensity profile, named as circularly symmetric Hermite-Gaussian correlated Schell-model (CSHGCSM) source. The analytical expressions for the cross-spectral density (CSD) function of a CSHGCSM beam propagating in free space and in linear isotropic random media are derived, respectively. It is shown that the CSHGCSM beam exhibits a robust ring-shaped profile in far field, and three-dimensionally (3D) optical cage could be obtained when the CSHGCSM beam focused by a thin lens. The optical cage length is dependent on parameters of mode order <i>n</i>, transverse coherence width <i>δ</i>, focal length <i>f</i>, and beam wavelength <i>λ</i>. Furthermore, it is demonstrated that the CSHGCSM beam propagating in linear random media at small distance from the source exhibits annular profile, then converts into Gaussian beam as the propagation distance increases. There is a phenomenon of regenerative oscillation for the spectral degree of coherence (SDOC) of the CSHGCSM beam in the presence of random media.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"42 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and performance evaluation of 2D nickel oxide nanosheet thin film electrodes in energy storage devices","authors":"Peeyush Phogat, Shreya, Ranjana Jha, Sukhvir Singh","doi":"10.1007/s12648-024-03415-w","DOIUrl":"https://doi.org/10.1007/s12648-024-03415-w","url":null,"abstract":"<p>This research comprehensively investigates the structural, optical, and electrochemical properties of nickel oxide (NiO) nanoparticles, focusing on its potential applications in energy storage systems, particularly electrochemical double-layer capacitors (EDLCs). In a single-step hydrothermal process, two-dimensional (2D) NiO nanoparticles was synthesized using carbon templates. X-ray diffraction analysis confirmed NiO nanoparticle’s crystalline nature, revealing a crystallite size of approximately 35 nm. Optical characterization unveiled NiO nanoparticle’s distinctive absorption pattern in the UV region, with additional absorbance observed in the visible region, and a calculated band gap of 2.6 eV. Morphological studies depicted a unique 2D nanosheets structure for NiO nanoparticles, with microstructural images showing fringe patterns and selected area electron diffraction patterns indicating its polycrystalline nature. NiO nanoparticles exhibit excellent electrochemical performance, including high specific capacitance, which is crucial for efficient energy storage. Their unique 2D nanosheet structure enhances surface area and facilitates better charge transport, making them ideal for EDLCs. Additionally, the reduced band gap of NiO nanoparticles, as determined in this study, improves their conductivity and overall electrochemical behavior. These novel attributes position NiO nanoparticles as superior materials for advancing the performance and efficiency of energy storage devices. Crucially, NiO nanoparticles exhibited a high specific capacitance of 13 F/g, highlighting its suitability for EDLCs. This finding positions NiO nanoparticles as a promising candidate for energy storage applications, advancing the field of supercapacitors. Electrochemical analysis through cyclic voltammetry and Nyquist plots further elucidated the material's potential in energy storage applications. This interdisciplinary exploration enriches our understanding of NiO nanoparticles and underscores its utility in emerging energy storage technologies, guiding further advancements in supercapacitor systems for sustainable energy solutions.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}