Functional & Integrative Genomics最新文献

筛选
英文 中文
CRISPR-Cas9 mediated understanding of plants’ abiotic stress-responsive genes to combat changing climatic patterns 通过 CRISPR-Cas9 介导了解植物的非生物胁迫响应基因,以应对不断变化的气候模式。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-30 DOI: 10.1007/s10142-024-01405-z
Muhammad Waqas Choudry, Rabia Riaz, Pashma Nawaz, Maria Ashraf, Bushra Ijaz, Allah Bakhsh
{"title":"CRISPR-Cas9 mediated understanding of plants’ abiotic stress-responsive genes to combat changing climatic patterns","authors":"Muhammad Waqas Choudry,&nbsp;Rabia Riaz,&nbsp;Pashma Nawaz,&nbsp;Maria Ashraf,&nbsp;Bushra Ijaz,&nbsp;Allah Bakhsh","doi":"10.1007/s10142-024-01405-z","DOIUrl":"10.1007/s10142-024-01405-z","url":null,"abstract":"<div><p>Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emodin inhibits M1 macrophage activation that related to acute and chronic kidney injury through EGFR/MAPK pathway 大黄素通过表皮生长因子受体/MAPK途径抑制与急慢性肾损伤相关的M1巨噬细胞活化。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-30 DOI: 10.1007/s10142-024-01407-x
Weijian Xiong, Jing Tang, Hangxing Yu, Yan Luo, Minghuan Yu, Ying Li
{"title":"Emodin inhibits M1 macrophage activation that related to acute and chronic kidney injury through EGFR/MAPK pathway","authors":"Weijian Xiong,&nbsp;Jing Tang,&nbsp;Hangxing Yu,&nbsp;Yan Luo,&nbsp;Minghuan Yu,&nbsp;Ying Li","doi":"10.1007/s10142-024-01407-x","DOIUrl":"10.1007/s10142-024-01407-x","url":null,"abstract":"<div><h3>Background</h3><p>Macrophages are the main inflammatory cells involved in kidney injury and play a significant role in the development of acute kidney injury (AKI) and progression of chronic kidney disease (CKD). Emodin is believed to stabilize macrophage homeostasis under pathological conditions. The objective of this study aimed to explore the underlying mechanisms and effects of Emodin on M1 macrophages.</p><h3>Methods</h3><p>Network pharmacology methods were used to predict target proteins associated with renal injury and identify the pathways affected by emodin. RAW264.7 macrophages were induced into M1 polarization using LPS and then treated with emodin at 20, 40, and 80 µM. The effects of emodin on cell viability, cytokines (IL-1β, IL-6, TNF-α), M1 macrophage markers (F4/80 + CD86+), and the EGFR/MAPK pathway were evaluated. Additionally, we transfected RAW264.7 cells with an EGFR shRNA interference lentivirus to assess its effects on RAW264.7 cells function and MAPK pathway. After RAW264.7 cells were passaged to expanded culture and transfected with EGFR-interfering plasmid, macrophages were induced to polarize towards M1 with LPS and then treated with 80 µM emodin. CKD modeling was performed to test how emodin is regulated during CKD.</p><h3>Results</h3><p>There are 15 common targets between emodin and kidney injury, of which the EGFR/MAPK pathway is the pathway through which emodin affects macrophage function. Emodin significantly reduced the levels of IL-6, IL-1β and TNF-α (<i>p</i> &lt; 0.05) and the ratio of M1 macrophage surface markers F4/80 + CD86+ (<i>p</i> &lt; 0.01) in the supernatant of RAW264.7 cells in a dose-dependent manner. Furthermore, the inhibitory effect of emodin on RAW264.7 cells was achieved by interfering with the EGFR/MAPK pathway. Moreover, emodin also affected the mRNA and protein expression of EGFR and Ras, leading to a decrease in the rate of M1 macrophages, thus inhibiting the pro-inflammatory effect of M1 macrophages. The addition of emodin reduced the rate of M1 macrophages in CKD and inhibited the further polarization of M1 macrophages, thus maintaining the pro-inflammatory and anti-inflammatory homeostasis in CKD, and these effects were achieved by emodin through the control of the EGRF/ERK pathway.</p><h3>Conclusion</h3><p>Emodin attenuates M1 macrophage polarization and pro-inflammatory responses via the EGFR/MAPK signalling pathway. And the addition of emodin maintains pro- and anti-inflammatory homeostasis, which is important for maintaining organ function and tissue repair.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring circular RNAs as biomarkers for Parkinson’s disease and their expression changes after aerobic exercise rehabilitation 探索作为帕金森病生物标志物的环状 RNA 及其在有氧运动康复后的表达变化。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-29 DOI: 10.1007/s10142-024-01409-9
Flávia Maria Campos de Abreu, Deborah Almeida de Oliveira, Sabrina Simplício de Araujo Romero Ferrari, Karla Helena Coelho Vilaça e Silva, Ricardo Titze-de-Almeida, Simoneide Souza Titze-de-Almeida
{"title":"Exploring circular RNAs as biomarkers for Parkinson’s disease and their expression changes after aerobic exercise rehabilitation","authors":"Flávia Maria Campos de Abreu,&nbsp;Deborah Almeida de Oliveira,&nbsp;Sabrina Simplício de Araujo Romero Ferrari,&nbsp;Karla Helena Coelho Vilaça e Silva,&nbsp;Ricardo Titze-de-Almeida,&nbsp;Simoneide Souza Titze-de-Almeida","doi":"10.1007/s10142-024-01409-9","DOIUrl":"10.1007/s10142-024-01409-9","url":null,"abstract":"<div><p>Circular RNAs (circRNAs) are circularized single-stranded ribonucleic acids that interacts with DNA, RNA, and proteins to play critical roles in cell biology. CircRNAs regulate microRNA content, gene expression, and may code for specific peptides. Indeed, circRNAs are differentially expressed in neurodegenerative disorders like Parkinson’s disease (PD), playing a potential role in the mechanisms of brain pathology. The RNA molecules with aberrant expression in the brain can cross the blood–brain barrier and reach the bloodstream, which enable their use as non-invasive PD disease biomarker. Promising targets with valuable discriminatory ability in combined circRNA signatures include MAPK9_circ_0001566, SLAIN1_circ_0000497, SLAIN2_circ_0126525, PSEN1_circ_0003848, circ_0004381, and circ_0017204. On the other hand, regular exercises are effective therapy for mitigating PD symptoms, promoting neuroprotective effects with epigenetic modulation. Aerobic exercises slow symptom progression in PD by improving motor control, ameliorating higher functions, and enhancing brain activity and neuropathology. These improvements are accompanied by changes circRNA expression, including hsa_circ_0001535 (circFAM13B) and hsa_circ_0000437 (circCORO1C). The sensitivity of current methods for detecting circulating circRNAs is considered a limitation. While amplification kits already exist for low-abundant microRNAs, similar kits are needed for circRNAs. Alternatively, the use of digital PCR can help overcome this constraint. The current review examines the potential use of circRNAs as non-invasive biomarkers of PD and to assess the effects of rehabilitation. Although circRNAs hold promise as targets for PD diagnosis and therapeutics, further validation is needed before their clinical implementation.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploratory comparative transcriptomic analysis reveals potential gene targets associated with Cry1A.105 and Cry2Ab2 resistance in fall armyworm (Spodoptera frugiperda) 探索性比较转录组学分析揭示了与秋刺吸虫(Spodoptera frugiperda)Cry1A.105 和 Cry2Ab2 抗性相关的潜在基因靶标。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-23 DOI: 10.1007/s10142-024-01408-w
Tereza Cristina L. Castellane, Camila C. Fernandes, Daniel G. Pinheiro, Manoel Victor Franco Lemos, Alessandro M. Varani
{"title":"Exploratory comparative transcriptomic analysis reveals potential gene targets associated with Cry1A.105 and Cry2Ab2 resistance in fall armyworm (Spodoptera frugiperda)","authors":"Tereza Cristina L. Castellane,&nbsp;Camila C. Fernandes,&nbsp;Daniel G. Pinheiro,&nbsp;Manoel Victor Franco Lemos,&nbsp;Alessandro M. Varani","doi":"10.1007/s10142-024-01408-w","DOIUrl":"10.1007/s10142-024-01408-w","url":null,"abstract":"<div><p>Genetically modified (GM) crops, expressing <i>Bacillus thuringiensis</i> (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like <i>Spodoptera frugiperda</i>, known as the fall armyworm (FAW). FAW’s adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 − 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW’s resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent mutation based evolutionary optimization algorithm for genomics and precision medicine 基于突变的智能进化优化算法,用于基因组学和精准医疗。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-22 DOI: 10.1007/s10142-024-01401-3
Shailendra Pratap Singh, Dileep Kumar Yadav, Mohammad Kazem Chamran, Darshika G. Perera
{"title":"Intelligent mutation based evolutionary optimization algorithm for genomics and precision medicine","authors":"Shailendra Pratap Singh,&nbsp;Dileep Kumar Yadav,&nbsp;Mohammad Kazem Chamran,&nbsp;Darshika G. Perera","doi":"10.1007/s10142-024-01401-3","DOIUrl":"10.1007/s10142-024-01401-3","url":null,"abstract":"<div><p>In this paper, genomics and precision medicine have witnessed remarkable progress with the advent of high-throughput sequencing technologies and advances in data analytics. However, because of the data’s great dimensionality and complexity, the processing and interpretation of large-scale genomic data present major challenges. In order to overcome these difficulties, this research suggests a novel Intelligent Mutation-Based Evolutionary Optimization Algorithm (IMBOA) created particularly for applications in genomics and precision medicine. In the proposed IMBOA, the mutation operator is guided by genome-based information, allowing for the introduction of variants in candidate solutions that are consistent with known biological processes. The algorithm’s combination of Differential Evolution with this intelligent mutation mechanism enables effective exploration and exploitation of the solution space. Applying a domain-specific fitness function, the system evaluates potential solutions for each generation based on genomic correctness and fitness. The fitness function directs the search toward ideal solutions that achieve the problem’s objectives, while the genome accuracy measure assures that the solutions have physiologically relevant genomic properties. This work demonstrates extensive tests on diverse genomics datasets, including genotype-phenotype association studies and predictive modeling tasks in precision medicine, to verify the accuracy of the proposed approach. The results demonstrate that, in terms of precision, convergence rate, mean error, standard deviation, prediction, and fitness cost of physiologically important genomic biomarkers, the IMBOA consistently outperforms other cutting-edge optimization methods.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPC2 promotes prostate cancer progression via MDK-mediated activation of PI3K/AKT signaling pathway GPC2 通过 MDK 介导的 PI3K/AKT 信号通路激活促进前列腺癌的进展。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-17 DOI: 10.1007/s10142-024-01406-y
Sijin Chen, Jiaxing Liao, Juhua Li, Saihui Wang
{"title":"GPC2 promotes prostate cancer progression via MDK-mediated activation of PI3K/AKT signaling pathway","authors":"Sijin Chen,&nbsp;Jiaxing Liao,&nbsp;Juhua Li,&nbsp;Saihui Wang","doi":"10.1007/s10142-024-01406-y","DOIUrl":"10.1007/s10142-024-01406-y","url":null,"abstract":"<div><p>Prostate cancer is a major medical problem for men worldwide. Advanced prostate cancer is currently incurable. Recently, much attention was paid to the role of GPC2 in the field of oncology. Nevertheless, there have been no investigations of GPC2 and its regulatory mechanism in prostate cancer. Here, we revealed a novel action of GPC2 and a tumor promoting mechanism in prostate cancer. GPC2 was upregulated in prostate cancer tissues and cell lines. Higher expression of GPC2 was correlated with higher Gleason score, lymphatic metastasis, and worse overall survival in prostate cancer patients. Decreased expression of GPC2 inhibited cell proliferation, migration, and invasion in prostate cancer, whereas GPC2 overexpression promoted these properties. Mechanistically, GPC2 promoted the activation of PI3K/AKT signaling pathway through MDK. The rescue assay results in prostate cancer cells demonstrated that overexpression of MDK could attenuate GPC2 knockdown induced inactivation of PI3K/AKT signaling and partly reverse GPC2 knockdown induced inhibition of cell proliferation, migration, and invasion. In all, our study identified GPC2 as an oncogene in prostate cancer. GPC2 promoted prostate cancer cell proliferation, migration, and invasion via MDK-mediated activation of PI3K/AKT signaling pathway. GPC2 might be a promising prognosis predictor and potential therapeutic target in prostate cancer.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel antitumor mechanism of triptonide in colorectal cancer: inducing ferroptosis via the SLC7A11/GPX4 axis 三肽在结直肠癌中的新型抗肿瘤机制:通过 SLC7A11/GPX4 轴诱导铁变态反应
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-16 DOI: 10.1007/s10142-024-01402-2
Weijie Wang, Xiaofen Zhao, Jie Zhou, Hai Li
{"title":"A novel antitumor mechanism of triptonide in colorectal cancer: inducing ferroptosis via the SLC7A11/GPX4 axis","authors":"Weijie Wang,&nbsp;Xiaofen Zhao,&nbsp;Jie Zhou,&nbsp;Hai Li","doi":"10.1007/s10142-024-01402-2","DOIUrl":"10.1007/s10142-024-01402-2","url":null,"abstract":"<div><p>Colorectal cancer (CRC) is a prevalent malignancy affecting the human digestive tract. Triptonide has been shown to have some anticancer activity, but its effect in CRC is vague. Herein, we examined the effect of triptonide on CRC. In this study, the results of bioinformatics analysis displayed that triptonide may regulate ferroptosis in CRC by modulating GPX4 and SLC7A11. In HCT116 and LoVo cells, the expression levels of GPX4 and SLC7A11 were significantly reduced after triptonide management versus the control group. Triptonide inhibited proliferation, but promoted ferroptosis in CRC cells. SLC7A11 upregulation overturned the effects of triptonide on proliferation and ferroptosis in CRC cells. Triptonide inhibited activation of the PI3K/AKT/Nrf2 signaling in CRC cells. Activation of the PI3K/AKT signaling or Nrf2 upregulation overturned the effects of triptonide on proliferation and ferroptosis in CRC cells. Triptonide suppressed CRC cell growth in vivo by modulating SLC7A11 and GPX4. In conclusion, Triptonide repressed proliferation and facilitated ferroptosis of CRC cells by repressing the SLC7A11/GPX4 axis through inactivation of the PI3K/AKT/Nrf2 signaling.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TGF-β1-Induced LINC01094 promotes epithelial-mesenchymal transition in hepatocellular carcinoma through the miR-122-5p/TGFBR2–SAMD2–SMAD3 Axis TGF-β1诱导的LINC01094通过miR-122-5p/TGFBR2-SAMD2-SMAD3轴促进肝细胞癌的上皮-间质转化
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-12 DOI: 10.1007/s10142-024-01403-1
Xiaofeng Yang, Cuicui Xu, Chenghao Liu, Xiangwei Wu, Xueling Chen, Jun Hou, Lianghai Wang
{"title":"TGF-β1-Induced LINC01094 promotes epithelial-mesenchymal transition in hepatocellular carcinoma through the miR-122-5p/TGFBR2–SAMD2–SMAD3 Axis","authors":"Xiaofeng Yang,&nbsp;Cuicui Xu,&nbsp;Chenghao Liu,&nbsp;Xiangwei Wu,&nbsp;Xueling Chen,&nbsp;Jun Hou,&nbsp;Lianghai Wang","doi":"10.1007/s10142-024-01403-1","DOIUrl":"10.1007/s10142-024-01403-1","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. It has been proven that long non-coding RNAs (lncRNAs) play an essential role in regulating HCC progression. However, the involvement of LINC01094 in regulating epithelial-mesenchymal transition (EMT) in HCC remains unclear. LINC01094 expression in HCC patients was retrieved from the Cancer Genome Atlas database. Overexpressing and downregulating LINC01094 were conducted to investigate its biological functions using Hep3B, SNU-387, and HuH-7 cells. Western blotting and morphological observation were performed to study the EMT in HCC cells. Transwell assay was adopted to determine the migration and invasion of HCC cells. The underlying mechanism of competitive endogenous RNAs (ceRNAs) was investigated using bioinformatics analysis, quantitative reverse-transcription polymerase chain reaction, and rescue experiments. Elevated LINC01094 expression was observed in HCC and associated with a poor prognosis. Knockdown of LINC01094 expression in SNU-387 and HuH-7 cells could inhibit migration, invasion, and EMT markers. Overexpression of LINC01094 indicated that LINC01094 promoted EMT via the TGF-β/SMAD signaling pathway. The bioinformatics analysis revealed that miR-122-5p was a target of LINC01094. The miRWalk database analysis showed that <i>TGFBR2</i>, <i>SMAD2</i>, and <i>SMAD3</i> were downstream targets of miR-122-5p. Mechanically, LINC01094 acted as a ceRNA that facilitated HCC metastasis by sponging miR-122-5p to regulate the expression of <i>TGFBR2</i>, <i>SMAD2</i>, and <i>SMAD3</i>. Further, TGF-β1 could enhance the expression of LINC01094, forming a positive feedback loop. TGF-β1-induced LINC01094 expression promotes HCC cell migration and invasion by targeting the miR-122-5p/TGFBR2–SMAD2–SMAD3 axis. LINC01094 may be a potential prognostic biomarker and therapeutic target for HCC metastasis.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas9-mediated deletion enhancer of MECOM play a tumor suppressor role in ovarian cancer CRISPR-Cas9 介导的 MECOM 基因缺失增强子在卵巢癌中发挥抑癌作用。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-12 DOI: 10.1007/s10142-024-01399-8
Yujie Chen, Qiuwen Jiang, Yingzhuo Xue, Weiguan Chen, Minhui Hua
{"title":"CRISPR-Cas9-mediated deletion enhancer of MECOM play a tumor suppressor role in ovarian cancer","authors":"Yujie Chen,&nbsp;Qiuwen Jiang,&nbsp;Yingzhuo Xue,&nbsp;Weiguan Chen,&nbsp;Minhui Hua","doi":"10.1007/s10142-024-01399-8","DOIUrl":"10.1007/s10142-024-01399-8","url":null,"abstract":"<div><p>MDS1 and EVI1 complex locus (MECOM), a transcription factor encoding several variants, has been implicated in progression of ovarian cancer. The function of regulatory regions in regulating MECOM expression in ovarian cancer is not fully understood. In this study, MECOM expression was evaluated in ovarian cancer cell lines treated with bromodomain and extraterminal (BET) inhibitor JQ-1. Oncogenic phenotypes were assayed using assays of CCK-8, colony formation, wound-healing and transwell. Oncogenic phenotypes were estimated in stable sgRNA-transfected OVCAR3 cell lines. Xenograft mouse model was assayed via subcutaneous injection of enhancer-deleted OVCAR3 cell lines. The results displayed that expression of MECOM is downregulated in cell lines treated with JQ-1. Data from published ChIP-sequencing (H3K27Ac) in 3 ovarian cancer cell lines displayed a potential enhancer around the first exon. mRNA and protein expression were downregulated in OVCAR3 cells after deletion of the MECOM enhancer. Similarly, oncogenic phenotypes both in cells and in the xenograft mouse model were significantly attenuated. This study demonstrates that JQ-1 can inhibit the expression of MECOM and tumorigenesis. Deletion of the enhancer activity of MECOM has an indispensable role in inhibiting ovarian cancer progress, which sheds light on a promising opportunity for ovarian cancer treatment through the application of this non-coding DNA deletion.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosome theranostics: Comparative analysis of P body and exosome proteins and their mutations for clinical applications 外泌体治疗学:P 体和外泌体蛋白质及其突变的比较分析,以促进临床应用。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-07-12 DOI: 10.1007/s10142-024-01404-0
Greeshma Satheeshan, Ayan Kumar Si, Joel Rutta, Thejaswini Venkatesh
{"title":"Exosome theranostics: Comparative analysis of P body and exosome proteins and their mutations for clinical applications","authors":"Greeshma Satheeshan,&nbsp;Ayan Kumar Si,&nbsp;Joel Rutta,&nbsp;Thejaswini Venkatesh","doi":"10.1007/s10142-024-01404-0","DOIUrl":"10.1007/s10142-024-01404-0","url":null,"abstract":"<div><p>Exosomes are lipid-bilayered vesicles, originating from early endosomes that capture cellular proteins and genetic materials to form multi-vesicular bodies. These exosomes are secreted into extracellular fluids such as cerebrospinal fluid, blood, urine, and cell culture supernatants. They play a key role in intercellular communication by carrying active molecules like lipids, cytokines, growth factors, metabolites, proteins, and RNAs. Recently, the potential of exosomal delivery for therapeutic purposes has been explored due to their low immunogenicity, nano-scale size, and ability to cross cellular barriers. This review comprehensively examines the biogenesis of exosomes, their isolation techniques, and their diverse applications in theranostics. We delve into the mechanisms and methods for loading exosomes with mRNA, miRNA, proteins, and drugs, highlighting their transformative role in delivering therapeutic payloads. Additionally, the utility of exosomes in stem cell therapy is discussed, showcasing their potential in regenerative medicine. Insights into exosome cargo using pre- or post-loading techniques are critical for exosome theranostics. We review exosome databases such as ExoCarta, Expedia, and ExoBCD, which document exosome cargo. From these databases, we identified 25 proteins common to both exosomes and P-bodies, known for mutations in the COSMIC database. Exosome databases do not integrate with mutation analysis programs; hence, we performed mutation analysis using additional databases. Accounting for the mutation status of parental cells and exosomal cargo is crucial in exosome theranostics. This review provides a comprehensive report on exosome databases, proteins common to exosomes and P-bodies, and their mutation analysis, along with the latest studies on exosome-engineered theranostics.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信