JMIR Medical Informatics最新文献

筛选
英文 中文
Distributed Statistical Analyses: A Scoping Review and Examples of Operational Frameworks Adapted to Health Analytics. 分布式统计分析:范围审查和适用于健康分析的操作框架示例。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-14 DOI: 10.2196/53622
Félix Camirand Lemyre, Simon Lévesque, Marie-Pier Domingue, Klaus Herrmann, Jean-François Ethier
{"title":"Distributed Statistical Analyses: A Scoping Review and Examples of Operational Frameworks Adapted to Health Analytics.","authors":"Félix Camirand Lemyre, Simon Lévesque, Marie-Pier Domingue, Klaus Herrmann, Jean-François Ethier","doi":"10.2196/53622","DOIUrl":"10.2196/53622","url":null,"abstract":"<p><strong>Background: </strong>Data from multiple organizations are crucial for advancing learning health systems. However, ethical, legal, and social concerns may restrict the use of standard statistical methods that rely on pooling data. Although distributed algorithms offer alternatives, they may not always be suitable for health frameworks.</p><p><strong>Objective: </strong>This study aims to support researchers and data custodians in three ways: (1) providing a concise overview of the literature on statistical inference methods for horizontally partitioned data, (2) describing the methods applicable to generalized linear models (GLMs) and assessing their underlying distributional assumptions, and (3) adapting existing methods to make them fully usable in health settings.</p><p><strong>Methods: </strong>A scoping review methodology was used for the literature mapping, from which methods presenting a methodological framework for GLM analyses with horizontally partitioned data were identified and assessed from the perspective of applicability in health settings. Statistical theory was used to adapt methods and derive the properties of the resulting estimators.</p><p><strong>Results: </strong>From the review, 41 articles were selected and 6 approaches were extracted to conduct standard GLM-based statistical analysis. However, these approaches assumed evenly and identically distributed data across nodes. Consequently, statistical procedures were derived to accommodate uneven node sample sizes and heterogeneous data distributions across nodes. Workflows and detailed algorithms were developed to highlight information sharing requirements and operational complexity.</p><p><strong>Conclusions: </strong>This study contributes to the field of health analytics by providing an overview of the methods that can be used with horizontally partitioned data by adapting these methods to the context of heterogeneous health data and clarifying the workflows and quantities exchanged by the methods discussed. Further analysis of the confidentiality preserved by these methods is needed to fully understand the risk associated with the sharing of summary statistics.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e53622"},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unintended Consequences of Data Sharing Under the Meaningful Use Program. 在 "有意义使用计划 "下数据共享的意外后果。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-14 DOI: 10.2196/52675
Irmgard Ursula Willcockson, Ignacio Herman Valdes
{"title":"Unintended Consequences of Data Sharing Under the Meaningful Use Program.","authors":"Irmgard Ursula Willcockson, Ignacio Herman Valdes","doi":"10.2196/52675","DOIUrl":"10.2196/52675","url":null,"abstract":"<p><strong>Unlabelled: </strong>Interoperability has been designed to improve the quality and efficiency of health care. It allows the Centers for Medicare and Medicaid Services to collect data on quality measures as a part of the Meaningful Use program. Covered providers who fail to provide data have lower rates of reimbursement. Unintended consequences also arise at each step of the data collection process: (1) providers are not reimbursed for the extra time required to generate data; (2) patients do not have control over when and how their data are provided to or used by the government; and (3) large datasets increase the chances of an accidental data breach or intentional hacker attack. After detailing the issues, we describe several solutions, including an appropriate data use review board, which is designed to oversee certain aspects of the process and ensure accountability and transparency.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e52675"},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completion Rate and Satisfaction With Online Computer-Assisted History Taking Questionnaires in Orthopedics: Multicenter Implementation Report. 骨科在线计算机辅助历史调查问卷的完成率和满意度:多中心实施报告。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-13 DOI: 10.2196/60655
Casper Craamer, Thomas Timmers, Michiel Siebelt, Rudolf Bertijn Kool, Carel Diekerhof, Jan Jacob Caron, Taco Gosens, Walter van der Weegen
{"title":"Completion Rate and Satisfaction With Online Computer-Assisted History Taking Questionnaires in Orthopedics: Multicenter Implementation Report.","authors":"Casper Craamer, Thomas Timmers, Michiel Siebelt, Rudolf Bertijn Kool, Carel Diekerhof, Jan Jacob Caron, Taco Gosens, Walter van der Weegen","doi":"10.2196/60655","DOIUrl":"10.2196/60655","url":null,"abstract":"<p><strong>Background: </strong>Collecting the medical history during a first outpatient consultation plays an important role in making a diagnosis. However, it is a time-consuming process, and time is scarce in today's health care environment. The computer-assisted history taking (CAHT) systems allow patients to share their medical history electronically before their visit. Although multiple advantages of CAHT have been demonstrated, adoption in everyday medical practice remains low, which has been attributed to various barriers.</p><p><strong>Objective: </strong>This study aimed to implement a CAHT questionnaire for orthopedic patients in preparation for their first outpatient consultation and analyze its completion rate and added value.</p><p><strong>Methods: </strong>A multicenter implementation study was conducted in which all patients who were referred to the orthopedic department were invited to self-complete the CAHT questionnaire. The primary outcome of the study is the completion rate of the questionnaire. Secondary outcomes included patient and physician satisfaction. These were assessed via surveys and semistructured interviews.</p><p><strong>Unlabelled: </strong>In total, 5321 patients were invited, and 4932 (92.7%) fully completed the CAHT questionnaire between April 2022 and July 2022. On average, participants (n=224) rated the easiness of completing the questionnaire at 8.0 (SD 1.9; 0-10 scale) and the satisfaction of the consult at 8.0 (SD 1.7; 0-10 scale). Satisfaction with the outpatient consultation was higher in cases where the given answers were used by the orthopedic surgeon during this consultation (median 8.3, IQR 8.0-9.1 vs median 8.0, IQR 7.0-8.5; P<.001). Physicians (n=15) scored the average added value as 7.8 (SD 1.7; 0-10 scale) and unanimously recognized increased efficiency, better patient engagement, and better medical record completeness. Implementing the patient's answers into the electronic health record was deemed necessary.</p><p><strong>Conclusions: </strong>In this study, we have shown that previously recognized barriers to implementing and adapting CAHT can now be effectively overcome. We demonstrated that almost all patients completed the CAHT questionnaire. This results in reported improvements in both the efficiency and personalization of outpatient consultations. Given the pressing need for personalized health care delivery in today's time-constrained medical environment, we recommend implementing CAHT systems in routine medical practice.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e60655"},"PeriodicalIF":3.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Bias Assessment for Complex Term Groups in Language Embedding Models: Quantitative Comparison of Methods. 加强语言嵌入模型中复杂词组的偏差评估:方法的定量比较。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-12 DOI: 10.2196/60272
Magnus Gray, Mariofanna Milanova, Leihong Wu
{"title":"Enhancing Bias Assessment for Complex Term Groups in Language Embedding Models: Quantitative Comparison of Methods.","authors":"Magnus Gray, Mariofanna Milanova, Leihong Wu","doi":"10.2196/60272","DOIUrl":"10.2196/60272","url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) is rapidly being adopted to build products and aid in the decision-making process across industries. However, AI systems have been shown to exhibit and even amplify biases, causing a growing concern among people worldwide. Thus, investigating methods of measuring and mitigating bias within these AI-powered tools is necessary.</p><p><strong>Objective: </strong>In natural language processing applications, the word embedding association test (WEAT) is a popular method of measuring bias in input embeddings, a common area of measure bias in AI. However, certain limitations of the WEAT have been identified (ie, their nonrobust measure of bias and their reliance on predefined and limited groups of words or sentences), which may lead to inadequate measurements and evaluations of bias. Thus, this study takes a new approach at modifying this popular measure of bias, with a focus on making it more robust and applicable in other domains.</p><p><strong>Methods: </strong>In this study, we introduce the SD-WEAT, which is a modified version of the WEAT that uses the SD of multiple permutations of the WEATs to calculate bias in input embeddings. With the SD-WEAT, we evaluated the biases and stability of several language embedding models, including Global Vectors for Word Representation (GloVe), Word2Vec, and bidirectional encoder representations from transformers (BERT).</p><p><strong>Results: </strong>This method produces results comparable to those of the WEAT, with strong correlations between the methods' bias scores or effect sizes (r=0.786) and P values (r=0.776), while addressing some of its largest limitations. More specifically, the SD-WEAT is more accessible, as it removes the need to predefine attribute groups, and because the SD-WEAT measures bias over multiple runs rather than one, it reduces the impact of outliers and sample size. Furthermore, the SD-WEAT was found to be more consistent and reliable than its predecessor.</p><p><strong>Conclusions: </strong>Thus, the SD-WEAT shows promise for robustly measuring bias in the input embeddings fed to AI language models.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e60272"},"PeriodicalIF":3.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Clinical History Taking Through the Implementation of a Streamlined Electronic Questionnaire System at a Pediatric Headache Clinic: Development and Evaluation Study. 通过在儿科头痛门诊实施流线型电子问卷系统加强临床病史记录:发展与评估研究。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-08 DOI: 10.2196/54415
Jaeso Cho, Ji Yeon Han, Anna Cho, Sooyoung Yoo, Ho-Young Lee, Hunmin Kim
{"title":"Enhancing Clinical History Taking Through the Implementation of a Streamlined Electronic Questionnaire System at a Pediatric Headache Clinic: Development and Evaluation Study.","authors":"Jaeso Cho, Ji Yeon Han, Anna Cho, Sooyoung Yoo, Ho-Young Lee, Hunmin Kim","doi":"10.2196/54415","DOIUrl":"10.2196/54415","url":null,"abstract":"<p><strong>Background: </strong>Accurate history taking is essential for diagnosis, treatment, and patient care, yet miscommunications and time constraints often lead to incomplete information. Consequently, there has been a pressing need to establish a system whereby the questionnaire is duly completed before the medical appointment, entered into the electronic health record (EHR), and stored in a structured format within a database.</p><p><strong>Objective: </strong>This study aimed to develop and evaluate a streamlined electronic questionnaire system, BEST-Survey (Bundang Hospital Electronic System for Total Care-Survey), integrated with the EHR, to enhance history taking and data management for patients with pediatric headaches.</p><p><strong>Methods: </strong>An electronic questionnaire system was developed at Seoul National University Bundang Hospital, allowing patients to complete previsit questionnaires on a tablet PC. The information is automatically integrated into the EHR and stored in a structured database for further analysis. A retrospective analysis compared clinical information acquired from patients aged <18 years visiting the pediatric neurology outpatient clinic for headaches, before and after implementing the BEST-Survey system. The study included 365 patients before and 452 patients after system implementation. Answer rates and positive rates of key headache characteristics were compared between the 2 groups to evaluate the system's clinical utility.</p><p><strong>Results: </strong>Implementation of the BEST-Survey system significantly increased the mean data acquisition rate from 54.6% to 99.3% (P<.001). Essential clinical features such as onset, location, duration, severity, nature, and frequency were obtained in over 98.7% (>446/452) of patients after implementation, compared to from 53.7% (196/365) to 85.2% (311/365) before. The electronic system facilitated comprehensive data collection, enabling detailed analysis of headache characteristics in the patient population. Most patients (280/452, 61.9%) reported headache onset less than 1 year prior, with the temporal region being the most common pain location (261/703, 37.1%). Over half (232/452, 51.3%) experienced headaches lasting less than 2 hours, with nausea and vomiting as the most commonly associated symptoms (231/1036, 22.3%).</p><p><strong>Conclusions: </strong>The BEST-Survey system markedly improved the completeness and accuracy of essential history items for patients with pediatric headaches. The system also streamlined data extraction and analysis for clinical and research purposes. While the electronic questionnaire cannot replace physician-led history taking, it serves as a valuable adjunctive tool to enhance patient care.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e54415"},"PeriodicalIF":3.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Decision Support to Increase Emergency Department Naloxone Coprescribing: Implementation Report. 临床决策支持增加急诊科纳洛酮处方:实施报告。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-06 DOI: 10.2196/58276
Stuart W Sommers, Heather J Tolle, Katy E Trinkley, Christine G Johnston, Caitlin L Dietsche, Stephanie V Eldred, Abraham T Wick, Jason A Hoppe
{"title":"Clinical Decision Support to Increase Emergency Department Naloxone Coprescribing: Implementation Report.","authors":"Stuart W Sommers, Heather J Tolle, Katy E Trinkley, Christine G Johnston, Caitlin L Dietsche, Stephanie V Eldred, Abraham T Wick, Jason A Hoppe","doi":"10.2196/58276","DOIUrl":"10.2196/58276","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Coprescribing naloxone with opioid analgesics is a Centers for Disease Control and Prevention (CDC) best practice to mitigate the risk of fatal opioid overdose, yet coprescription by emergency medicine clinicians is rare, occurring less than 5% of the time it is indicated. Clinical decision support (CDS) has been associated with increased naloxone prescribing; however, key CDS design characteristics and pragmatic outcome measures necessary to understand replicability and effectiveness have not been reported.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;This study aimed to rigorously evaluate and quantify the impact of CDS designed to improve emergency department (ED) naloxone coprescribing. We hypothesized CDS would increase naloxone coprescribing and the number of naloxone prescriptions filled by patients discharged from EDs in a large health care system.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Following user-centered design principles, we designed and implemented a fully automated, interruptive, electronic health record-based CDS to nudge clinicians to coprescribe naloxone with high-risk opioid prescriptions. \"High-risk\" opioid prescriptions were defined as any opioid analgesic prescription ≥90 total morphine milligram equivalents per day or for patients with a prior diagnosis of opioid use disorder or opioid overdose. The Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework was used to evaluate pragmatic CDS outcomes of reach, effectiveness, adoption, implementation, and maintenance. Effectiveness was the primary outcome of interest and was assessed by (1) constructing a Bayesian structural time-series model of the number of ED visits with naloxone coprescriptions before and after CDS implementation and (2) calculating the percentage of naloxone prescriptions associated with CDS that were filled at an outpatient pharmacy. Mann-Kendall tests were used to evaluate longitudinal trends in CDS adoption. All outcomes were analyzed in R (version 4.2.2; R Core Team).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Unlabelled: &lt;/strong&gt;Between November 2019 and July 2023, there were 1,994,994 ED visits. CDS reached clinicians in 0.83% (16,566/1,994,994) of all visits and 15.99% (16,566/103,606) of ED visits where an opioid was prescribed at discharge. Clinicians adopted CDS, coprescribing naloxone in 34.36% (6613/19,246) of alerts. CDS was effective, increasing naloxone coprescribing from baseline by 18.1 (95% CI 17.9-18.3) coprescriptions per week or 2,327% (95% CI 3390-3490). Patients filled 43.80% (1989/4541) of naloxone coprescriptions. The CDS was implemented simultaneously at every ED and no adaptations were made to CDS postimplementation. CDS was maintained beyond the study period and maintained its effect, with adoption increasing over time (τ=0.454; P&lt;.001).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Our findings advance the evidence that electronic health record-based CDS increases the number of naloxone coprescriptions and improves the dis","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58276"},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Health Record Data Quality and Performance Assessments: Scoping Review. 电子健康记录数据质量和性能评估:范围审查。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-06 DOI: 10.2196/58130
Yordan P Penev, Timothy R Buchanan, Matthew M Ruppert, Michelle Liu, Ramin Shekouhi, Ziyuan Guan, Jeremy Balch, Tezcan Ozrazgat-Baslanti, Benjamin Shickel, Tyler J Loftus, Azra Bihorac
{"title":"Electronic Health Record Data Quality and Performance Assessments: Scoping Review.","authors":"Yordan P Penev, Timothy R Buchanan, Matthew M Ruppert, Michelle Liu, Ramin Shekouhi, Ziyuan Guan, Jeremy Balch, Tezcan Ozrazgat-Baslanti, Benjamin Shickel, Tyler J Loftus, Azra Bihorac","doi":"10.2196/58130","DOIUrl":"10.2196/58130","url":null,"abstract":"<p><strong>Background: </strong>Electronic health records (EHRs) have an enormous potential to advance medical research and practice through easily accessible and interpretable EHR-derived databases. Attainability of this potential is limited by issues with data quality (DQ) and performance assessment.</p><p><strong>Objective: </strong>This review aims to streamline the current best practices on EHR DQ and performance assessments as a replicable standard for researchers in the field.</p><p><strong>Methods: </strong>PubMed was systematically searched for original research articles assessing EHR DQ and performance from inception until May 7, 2023.</p><p><strong>Results: </strong>Our search yielded 26 original research articles. Most articles had 1 or more significant limitations, including incomplete or inconsistent reporting (n=6, 30%), poor replicability (n=5, 25%), and limited generalizability of results (n=5, 25%). Completeness (n=21, 81%), conformance (n=18, 69%), and plausibility (n=16, 62%) were the most cited indicators of DQ, while correctness or accuracy (n=14, 54%) was most cited for data performance, with context-specific supplementation by recency (n=7, 27%), fairness (n=6, 23%), stability (n=4, 15%), and shareability (n=2, 8%) assessments. Artificial intelligence-based techniques, including natural language data extraction, data imputation, and fairness algorithms, were demonstrated to play a rising role in improving both dataset quality and performance.</p><p><strong>Conclusions: </strong>This review highlights the need for incentivizing DQ and performance assessments and their standardization. The results suggest the usefulness of artificial intelligence-based techniques for enhancing DQ and performance to unlock the full potential of EHRs to improve medical research and practice.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58130"},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review. 利用人工智能和数据科学将健康的社会决定因素纳入急诊医学:范围审查。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-30 DOI: 10.2196/57124
Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni
{"title":"Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review.","authors":"Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni","doi":"10.2196/57124","DOIUrl":"10.2196/57124","url":null,"abstract":"<p><strong>Background: </strong>Social determinants of health (SDOH) are critical drivers of health disparities and patient outcomes. However, accessing and collecting patient-level SDOH data can be operationally challenging in the emergency department (ED) clinical setting, requiring innovative approaches.</p><p><strong>Objective: </strong>This scoping review examines the potential of AI and data science for modeling, extraction, and incorporation of SDOH data specifically within EDs, further identifying areas for advancement and investigation.</p><p><strong>Methods: </strong>We conducted a standardized search for studies published between 2015 and 2022, across Medline (Ovid), Embase (Ovid), CINAHL, Web of Science, and ERIC databases. We focused on identifying studies using AI or data science related to SDOH within emergency care contexts or conditions. Two specialized reviewers in emergency medicine (EM) and clinical informatics independently assessed each article, resolving discrepancies through iterative reviews and discussion. We then extracted data covering study details, methodologies, patient demographics, care settings, and principal outcomes.</p><p><strong>Results: </strong>Of the 1047 studies screened, 26 met the inclusion criteria. Notably, 9 out of 26 (35%) studies were solely concentrated on ED patients. Conditions studied spanned broad EM complaints and included sepsis, acute myocardial infarction, and asthma. The majority of studies (n=16) explored multiple SDOH domains, with homelessness/housing insecurity and neighborhood/built environment predominating. Machine learning (ML) techniques were used in 23 of 26 studies, with natural language processing (NLP) being the most commonly used approach (n=11). Rule-based NLP (n=5), deep learning (n=2), and pattern matching (n=4) were the most commonly used NLP techniques. NLP models in the reviewed studies displayed significant predictive performance with outcomes, with F1-scores ranging between 0.40 and 0.75 and specificities nearing 95.9%.</p><p><strong>Conclusions: </strong>Although in its infancy, the convergence of AI and data science techniques, especially ML and NLP, with SDOH in EM offers transformative possibilities for better usage and integration of social data into clinical care and research. With a significant focus on the ED and notable NLP model performance, there is an imperative to standardize SDOH data collection, refine algorithms for diverse patient groups, and champion interdisciplinary synergies. These efforts aim to harness SDOH data optimally, enhancing patient care and mitigating health disparities. Our research underscores the vital need for continued investigation in this domain.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e57124"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted Natural Language Processing Task-Based Evaluation of Bidirectional Encoder Representations From Transformers Models for Bilingual (Korean and English) Clinical Notes: Algorithm Development and Validation. 基于多方面自然语言处理任务的双向编码器表征评估--来自双语(韩语和英语)临床笔记的变换器模型:算法开发与验证。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-30 DOI: 10.2196/52897
Kyungmo Kim, Seongkeun Park, Jeongwon Min, Sumin Park, Ju Yeon Kim, Jinsu Eun, Kyuha Jung, Yoobin Elyson Park, Esther Kim, Eun Young Lee, Joonhwan Lee, Jinwook Choi
{"title":"Multifaceted Natural Language Processing Task-Based Evaluation of Bidirectional Encoder Representations From Transformers Models for Bilingual (Korean and English) Clinical Notes: Algorithm Development and Validation.","authors":"Kyungmo Kim, Seongkeun Park, Jeongwon Min, Sumin Park, Ju Yeon Kim, Jinsu Eun, Kyuha Jung, Yoobin Elyson Park, Esther Kim, Eun Young Lee, Joonhwan Lee, Jinwook Choi","doi":"10.2196/52897","DOIUrl":"10.2196/52897","url":null,"abstract":"<p><strong>Background: </strong>The bidirectional encoder representations from transformers (BERT) model has attracted considerable attention in clinical applications, such as patient classification and disease prediction. However, current studies have typically progressed to application development without a thorough assessment of the model's comprehension of clinical context. Furthermore, limited comparative studies have been conducted on BERT models using medical documents from non-English-speaking countries. Therefore, the applicability of BERT models trained on English clinical notes to non-English contexts is yet to be confirmed. To address these gaps in literature, this study focused on identifying the most effective BERT model for non-English clinical notes.</p><p><strong>Objective: </strong>In this study, we evaluated the contextual understanding abilities of various BERT models applied to mixed Korean and English clinical notes. The objective of this study was to identify the BERT model that excels in understanding the context of such documents.</p><p><strong>Methods: </strong>Using data from 164,460 patients in a South Korean tertiary hospital, we pretrained BERT-base, BERT for Biomedical Text Mining (BioBERT), Korean BERT (KoBERT), and Multilingual BERT (M-BERT) to improve their contextual comprehension capabilities and subsequently compared their performances in 7 fine-tuning tasks.</p><p><strong>Results: </strong>The model performance varied based on the task and token usage. First, BERT-base and BioBERT excelled in tasks using classification ([CLS]) token embeddings, such as document classification. BioBERT achieved the highest F1-score of 89.32. Both BERT-base and BioBERT demonstrated their effectiveness in document pattern recognition, even with limited Korean tokens in the dictionary. Second, M-BERT exhibited a superior performance in reading comprehension tasks, achieving an F1-score of 93.77. Better results were obtained when fewer words were replaced with unknown ([UNK]) tokens. Third, M-BERT excelled in the knowledge inference task in which correct disease names were inferred from 63 candidate disease names in a document with disease names replaced with [MASK] tokens. M-BERT achieved the highest hit@10 score of 95.41.</p><p><strong>Conclusions: </strong>This study highlighted the effectiveness of various BERT models in a multilingual clinical domain. The findings can be used as a reference in clinical and language-based applications.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e52897"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Natural Language Processing-Inspired Methodology (Detection, Initial Characterization, and Semantic Characterization) to Investigate Temporal Shifts (Drifts) in Health Care Data: Quantitative Study. 一种受自然语言处理启发的新方法(检测、初始特征描述和语义特征描述),用于调查医疗保健数据中的时空转移(漂移):定量研究。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-28 DOI: 10.2196/54246
Bruno Paiva, Marcos André Gonçalves, Leonardo Chaves Dutra da Rocha, Milena Soriano Marcolino, Fernanda Cristina Barbosa Lana, Maira Viana Rego Souza-Silva, Jussara M Almeida, Polianna Delfino Pereira, Claudio Moisés Valiense de Andrade, Angélica Gomides Dos Reis Gomes, Maria Angélica Pires Ferreira, Frederico Bartolazzi, Manuela Furtado Sacioto, Ana Paula Boscato, Milton Henriques Guimarães-Júnior, Priscilla Pereira Dos Reis, Felício Roberto Costa, Alzira de Oliveira Jorge, Laryssa Reis Coelho, Marcelo Carneiro, Thaís Lorenna Souza Sales, Silvia Ferreira Araújo, Daniel Vitório Silveira, Karen Brasil Ruschel, Fernanda Caldeira Veloso Santos, Evelin Paola de Almeida Cenci, Luanna Silva Monteiro Menezes, Fernando Anschau, Maria Aparecida Camargos Bicalho, Euler Roberto Fernandes Manenti, Renan Goulart Finger, Daniela Ponce, Filipe Carrilho de Aguiar, Luiza Margoto Marques, Luís César de Castro, Giovanna Grünewald Vietta, Mariana Frizzo de Godoy, Mariana do Nascimento Vilaça, Vivian Costa Morais
{"title":"A New Natural Language Processing-Inspired Methodology (Detection, Initial Characterization, and Semantic Characterization) to Investigate Temporal Shifts (Drifts) in Health Care Data: Quantitative Study.","authors":"Bruno Paiva, Marcos André Gonçalves, Leonardo Chaves Dutra da Rocha, Milena Soriano Marcolino, Fernanda Cristina Barbosa Lana, Maira Viana Rego Souza-Silva, Jussara M Almeida, Polianna Delfino Pereira, Claudio Moisés Valiense de Andrade, Angélica Gomides Dos Reis Gomes, Maria Angélica Pires Ferreira, Frederico Bartolazzi, Manuela Furtado Sacioto, Ana Paula Boscato, Milton Henriques Guimarães-Júnior, Priscilla Pereira Dos Reis, Felício Roberto Costa, Alzira de Oliveira Jorge, Laryssa Reis Coelho, Marcelo Carneiro, Thaís Lorenna Souza Sales, Silvia Ferreira Araújo, Daniel Vitório Silveira, Karen Brasil Ruschel, Fernanda Caldeira Veloso Santos, Evelin Paola de Almeida Cenci, Luanna Silva Monteiro Menezes, Fernando Anschau, Maria Aparecida Camargos Bicalho, Euler Roberto Fernandes Manenti, Renan Goulart Finger, Daniela Ponce, Filipe Carrilho de Aguiar, Luiza Margoto Marques, Luís César de Castro, Giovanna Grünewald Vietta, Mariana Frizzo de Godoy, Mariana do Nascimento Vilaça, Vivian Costa Morais","doi":"10.2196/54246","DOIUrl":"10.2196/54246","url":null,"abstract":"<p><strong>Background: </strong>Proper analysis and interpretation of health care data can significantly improve patient outcomes by enhancing services and revealing the impacts of new technologies and treatments. Understanding the substantial impact of temporal shifts in these data is crucial. For example, COVID-19 vaccination initially lowered the mean age of at-risk patients and later changed the characteristics of those who died. This highlights the importance of understanding these shifts for assessing factors that affect patient outcomes.</p><p><strong>Objective: </strong>This study aims to propose detection, initial characterization, and semantic characterization (DIS), a new methodology for analyzing changes in health outcomes and variables over time while discovering contextual changes for outcomes in large volumes of data.</p><p><strong>Methods: </strong>The DIS methodology involves 3 steps: detection, initial characterization, and semantic characterization. Detection uses metrics such as Jensen-Shannon divergence to identify significant data drifts. Initial characterization offers a global analysis of changes in data distribution and predictive feature significance over time. Semantic characterization uses natural language processing-inspired techniques to understand the local context of these changes, helping identify factors driving changes in patient outcomes. By integrating the outcomes from these 3 steps, our results can identify specific factors (eg, interventions and modifications in health care practices) that drive changes in patient outcomes. DIS was applied to the Brazilian COVID-19 Registry and the Medical Information Mart for Intensive Care, version IV (MIMIC-IV) data sets.</p><p><strong>Results: </strong>Our approach allowed us to (1) identify drifts effectively, especially using metrics such as the Jensen-Shannon divergence, and (2) uncover reasons for the decline in overall mortality in both the COVID-19 and MIMIC-IV data sets, as well as changes in the cooccurrence between different diseases and this particular outcome. Factors such as vaccination during the COVID-19 pandemic and reduced iatrogenic events and cancer-related deaths in MIMIC-IV were highlighted. The methodology also pinpointed shifts in patient demographics and disease patterns, providing insights into the evolving health care landscape during the study period.</p><p><strong>Conclusions: </strong>We developed a novel methodology combining machine learning and natural language processing techniques to detect, characterize, and understand temporal shifts in health care data. This understanding can enhance predictive algorithms, improve patient outcomes, and optimize health care resource allocation, ultimately improving the effectiveness of machine learning predictive algorithms applied to health care data. Our methodology can be applied to a variety of scenarios beyond those discussed in this paper.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e54246"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信