{"title":"A short note on \"A note on single-machine scheduling with job-dependent learning effects\"","authors":"Dar-Li Yang, Yung-Tsung Hou, W. Kuo","doi":"10.1016/j.ipl.2023.106423","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106423","url":null,"abstract":"","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"183 1","pages":"106423"},"PeriodicalIF":0.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54536044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Brosse , Oscar Defrain , Kazuhiro Kurita , Vincent Limouzy , Takeaki Uno , Kunihiro Wasa
{"title":"On the hardness of inclusion-wise minimal separators enumeration","authors":"Caroline Brosse , Oscar Defrain , Kazuhiro Kurita , Vincent Limouzy , Takeaki Uno , Kunihiro Wasa","doi":"10.1016/j.ipl.2023.106469","DOIUrl":"10.1016/j.ipl.2023.106469","url":null,"abstract":"<div><p><span>Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal </span><em>a</em>-<em>b</em> separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless <span><math><mi>P</mi><mo>=</mo><mrow><mi>NP</mi></mrow></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106469"},"PeriodicalIF":0.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138684935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniele Dell'Erba, Sven Schewe, Qiyi Tang, Tansholpan Zhanabekova
{"title":"Semantic flowers for good-for-games and deterministic automata","authors":"Daniele Dell'Erba, Sven Schewe, Qiyi Tang, Tansholpan Zhanabekova","doi":"10.1016/j.ipl.2023.106468","DOIUrl":"10.1016/j.ipl.2023.106468","url":null,"abstract":"<div><p>We present an innovative approach for capturing the complexity of <em>ω</em>-regular languages using the concept of <em>flowers</em>. This semantic tool combines two syntax-based definitions, namely the Mostowski hierarchy of word languages and syntactic flowers. The former is based on deterministic parity automata with a limited number of priorities, while the latter simplifies deterministic parity automata by reducing the number of priorities used, without altering their structure. Synthesising these two approaches yields a semantic concept of flowers, which offers a more effective way of dealing with the complexity of <em>ω</em>-regular languages. This letter provides a comprehensive definition of semantic flowers and shows that it captures the complexity of <em>ω</em>-regular languages. We also show that this natural concept yields simple proofs of the expressive power of good-for-games automata.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106468"},"PeriodicalIF":0.5,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020019023001114/pdfft?md5=173be998b22c22ffaed2da451d27431e&pid=1-s2.0-S0020019023001114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation error of single hidden layer neural networks with fixed weights","authors":"Vugar E. Ismailov","doi":"10.1016/j.ipl.2023.106467","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106467","url":null,"abstract":"<div><p><span><span>Neural networks with finitely many fixed weights have the universal </span>approximation property under certain conditions on compact subsets of the </span><em>d</em>-dimensional Euclidean space, where approximation process is considered. Such conditions were delineated in our paper <span>[26]</span><span>. But for many compact sets it is impossible to approximate multivariate functions with arbitrary precision and the question on estimation or efficient computation of approximation error arises. This paper provides an explicit formula for the approximation error of single hidden layer neural networks with two fixed weights.</span></p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106467"},"PeriodicalIF":0.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing minimal solutions to the ring loading problem","authors":"Nikolas Klug","doi":"10.1016/j.ipl.2023.106466","DOIUrl":"10.1016/j.ipl.2023.106466","url":null,"abstract":"<div><p>Given a cycle graph of <em>n</em> nodes and a non-negative demand <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> for each pair of nodes <span><math><mi>i</mi><mo>,</mo><mi>j</mi></math></span>, the <em>ring loading problem with demand splitting</em> (RLPW) asks to determine a routing of these demands such that the maximum load on any edge is minimal. In this work, we present an algorithm for computing <em>minimal</em> solutions to RLPW in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time. This algorithm, when employed as a subroutine, also improves the runtimes for several other ring loading algorithms by a factor of up to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106466"},"PeriodicalIF":0.5,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the complexity of co-secure dominating set problem","authors":"B.S. Panda , Soumyashree Rana , Sounaka Mishra","doi":"10.1016/j.ipl.2023.106463","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106463","url":null,"abstract":"<div><p>A set <span><math><mi>D</mi><mo>⊆</mo><mi>V</mi></math></span> of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is a dominating set of <em>G</em> if every vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><mi>D</mi></math></span> is adjacent to at least one vertex in <em>D</em>. A set <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi></math></span> is a co-secure dominating set (<span>CSDS</span>) of a graph <em>G</em> if <em>S</em> is a dominating set of <em>G</em> and for each vertex <span><math><mi>u</mi><mo>∈</mo><mi>S</mi></math></span> there exists a vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><mi>S</mi></math></span> such that <span><math><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></math></span> and <span><math><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>u</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>v</mi><mo>}</mo></math></span> is a dominating set of <em>G</em>. The minimum cardinality of a co-secure dominating set of <em>G</em> is the co-secure domination number and it is denoted by <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi><mi>s</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Given a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, the minimum co-secure dominating set problem (<span>Min Co-secure Dom</span>) is to find a co-secure dominating set of minimum cardinality. In this paper, we strengthen the inapproximability result of <span>Min Co-secure Dom</span> for general graphs by showing that this problem can not be approximated within a factor of <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>ln</mi><mo></mo><mo>|</mo><mi>V</mi><mo>|</mo></math></span><span> for perfect elimination bipartite graphs and star convex bipartite graphs unless </span><span>P=NP</span>. On the positive side, we show that <span>Min Co-secure Dom</span> can be approximated within a factor of <span><math><mi>O</mi><mo>(</mo><mi>ln</mi><mo></mo><mo>|</mo><mi>V</mi><mo>|</mo><mo>)</mo></math></span> for any graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>. For 3-regular and 4-regular graphs, we show that <span>Min Co-secure Dom</span> is approximable within a factor of <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, respectively. Furthermore, we prove that <span>Min Co-secure Dom</span> is <span>APX</span>-complete for 3-regular graphs.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106463"},"PeriodicalIF":0.5,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138454038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deterministic treasure hunt and rendezvous in arbitrary connected graphs","authors":"Debasish Pattanayak, Andrzej Pelc","doi":"10.1016/j.ipl.2023.106455","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106455","url":null,"abstract":"<div><p>Treasure hunt and rendezvous are fundamental tasks performed by mobile agents in graphs. In treasure hunt, an agent has to find an inert target (called treasure) situated at an unknown node of the graph. In rendezvous, two agents, initially located at distinct nodes of the graph, traverse its edges in synchronous rounds and have to meet at some node. We assume that the graph is connected (otherwise none of these tasks is feasible) and consider deterministic treasure hunt and rendezvous algorithms. The time of a treasure hunt algorithm is the worst-case number of edge traversals performed by the agent until the treasure is found. The time of a rendezvous algorithm is the worst-case number of rounds since the wakeup of the earlier agent until the meeting.</p><p>To the best of our knowledge, all known treasure hunt and rendezvous algorithms rely on the assumption that degrees of all nodes are finite, even when the graph itself may be infinite. In the present paper we remove this assumption for the first time, and consider both above tasks in arbitrary connected graphs whose nodes can have either finite or countably infinite degrees. Our main result is the first universal treasure hunt algorithm working for arbitrary connected graphs. We prove that the time of this algorithm has optimal order of magnitude among all possible treasure hunt algorithms working for arbitrary connected graphs. As a consequence of this result we obtain the first universal rendezvous algorithm working for arbitrary connected graphs. The time of this algorithm is polynomial in a lower bound holding in many graphs, in particular in the tree all of whose degrees are infinite.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106455"},"PeriodicalIF":0.5,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67739970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of iterativity on adversarial opinion forming","authors":"Konstantinos Panagiotou, Simon Reisser","doi":"10.1016/j.ipl.2023.106453","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106453","url":null,"abstract":"<div><p>Consider the following model to study adversarial effects on opinion forming. A set of initially selected experts form their binary opinion while being influenced by an adversary, who may convince some of them of the falsehood. All other participants in the network then take the opinion of the majority of their neighboring experts. Can the adversary influence the experts in such a way that the majority of the network believes the falsehood? Alon et al. <span>[2]</span> conjectured that in this context an iterative dissemination process will always be beneficial to the adversary. In this note we provide a counterexample to that conjecture.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106453"},"PeriodicalIF":0.5,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92027369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti Tai mapping for unordered labeled trees","authors":"Mislav Blažević , Stefan Canzar , Khaled Elbassioni , Domagoj Matijević","doi":"10.1016/j.ipl.2023.106454","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106454","url":null,"abstract":"<div><p>The well-studied Tai mapping between two rooted labeled trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> defines a one-to-one mapping between nodes in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> that preserves ancestor relationship <span>[1]</span>. For unordered trees the problem of finding a maximum-weight Tai mapping is known to be NP-complete <span>[2]</span>. In this work, we define an anti Tai mapping <span><math><mi>M</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> as a binary relation between two unordered labeled trees such that any two </span><span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>∈</mo><mi>M</mi></math></span> violate ancestor relationship and thus cannot be part of the same Tai mapping, i.e. <span><math><mo>(</mo><mi>x</mi><mo>≤</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⇔</mo><mi>y</mi><mo>≰</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>∨</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≤</mo><mi>x</mi><mo>⇔</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≰</mo><mi>y</mi><mo>)</mo></math></span>, given an ancestor order <span><math><mi>x</mi><mo><</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> meaning that <em>x</em> is an ancestor of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span><span>. Finding a maximum-weight anti Tai mapping arises in the cutting plane method for solving the maximum-weight Tai mapping problem via integer programming. We give an efficient polynomial-time algorithm for finding a maximum-weight anti Tai mapping for the case when one of the two trees is a path and further show how to extend this result in order to provide a polynomially computable lower bound on the optimal anti Tai mapping for two unordered labeled trees. The latter result stems from the special class of anti Tai mappings defined by the more restricted condition </span><span><math><mi>x</mi><mo>∼</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⇔</mo><mi>y</mi><mo>≁</mo><msup><mrow><mi>y<","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106454"},"PeriodicalIF":0.5,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92027370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete and mixed two-center problems for line segments","authors":"Sukanya Maji, Sanjib Sadhu","doi":"10.1016/j.ipl.2023.106451","DOIUrl":"https://doi.org/10.1016/j.ipl.2023.106451","url":null,"abstract":"<div><p>Given a set of <em>n</em> non-intersecting line segments <span><math><mi>L</mi></math></span> and a set <em>Q</em> of <em>m</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>; we present algorithms of the discrete two-center problem for (i) covering, (ii) stabbing and (iii) hitting the set <span><math><mi>L</mi></math></span> in (i) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span>, (ii) <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and (iii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> time respectively, where the two disks are centered at two points of <em>Q</em> and radius of the larger disk is minimized. We also study the mixed two-center problems for (i) covering, (ii) stabbing and (iii) hitting the set <span><math><mi>L</mi></math></span>, where only one of the disks is centered at a point <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>Q</mi></math></span> and the other disk is centered at any point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and these three problems are solved in (i) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>, (ii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and (iii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> time, respectively. The space complexities for all these algorithms are linear.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"184 ","pages":"Article 106451"},"PeriodicalIF":0.5,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50192084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}