Anti Tai mapping for unordered labeled trees

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mislav Blažević , Stefan Canzar , Khaled Elbassioni , Domagoj Matijević
{"title":"Anti Tai mapping for unordered labeled trees","authors":"Mislav Blažević ,&nbsp;Stefan Canzar ,&nbsp;Khaled Elbassioni ,&nbsp;Domagoj Matijević","doi":"10.1016/j.ipl.2023.106454","DOIUrl":null,"url":null,"abstract":"<div><p>The well-studied Tai mapping between two rooted labeled trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> defines a one-to-one mapping between nodes in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> that preserves ancestor relationship <span>[1]</span>. For unordered trees the problem of finding a maximum-weight Tai mapping is known to be NP-complete <span>[2]</span>. In this work, we define an anti Tai mapping <span><math><mi>M</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> as a binary relation between two unordered labeled trees such that any two </span><span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>∈</mo><mi>M</mi></math></span> violate ancestor relationship and thus cannot be part of the same Tai mapping, i.e. <span><math><mo>(</mo><mi>x</mi><mo>≤</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⇔</mo><mi>y</mi><mo>≰</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>∨</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≤</mo><mi>x</mi><mo>⇔</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≰</mo><mi>y</mi><mo>)</mo></math></span>, given an ancestor order <span><math><mi>x</mi><mo>&lt;</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> meaning that <em>x</em> is an ancestor of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span><span>. Finding a maximum-weight anti Tai mapping arises in the cutting plane method for solving the maximum-weight Tai mapping problem via integer programming. We give an efficient polynomial-time algorithm for finding a maximum-weight anti Tai mapping for the case when one of the two trees is a path and further show how to extend this result in order to provide a polynomially computable lower bound on the optimal anti Tai mapping for two unordered labeled trees. The latter result stems from the special class of anti Tai mappings defined by the more restricted condition </span><span><math><mi>x</mi><mo>∼</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⇔</mo><mi>y</mi><mo>≁</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, where ∼ denotes that two nodes belong to the same root-to-leaf path. For this class, we give an efficient algorithm that solves the problem exactly on two unordered trees in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106454"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000972","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The well-studied Tai mapping between two rooted labeled trees T1=(V1,E1) and T2=(V2,E2) defines a one-to-one mapping between nodes in T1 and T2 that preserves ancestor relationship [1]. For unordered trees the problem of finding a maximum-weight Tai mapping is known to be NP-complete [2]. In this work, we define an anti Tai mapping MV1×V2 as a binary relation between two unordered labeled trees such that any two (x,y),(x,y)M violate ancestor relationship and thus cannot be part of the same Tai mapping, i.e. (xxyy)(xxyy), given an ancestor order x<x meaning that x is an ancestor of x. Finding a maximum-weight anti Tai mapping arises in the cutting plane method for solving the maximum-weight Tai mapping problem via integer programming. We give an efficient polynomial-time algorithm for finding a maximum-weight anti Tai mapping for the case when one of the two trees is a path and further show how to extend this result in order to provide a polynomially computable lower bound on the optimal anti Tai mapping for two unordered labeled trees. The latter result stems from the special class of anti Tai mappings defined by the more restricted condition xxyy, where ∼ denotes that two nodes belong to the same root-to-leaf path. For this class, we give an efficient algorithm that solves the problem exactly on two unordered trees in O(|V1|2|V2|2).

无序标记树的反Tai映射
两根标记树T1=(V1,E1)和T2=(V2,E2)之间的Tai映射被充分研究,定义了T1和T2中节点之间保持祖先关系[1]的一对一映射。对于无序树,寻找最大权值Tai映射的问题已知为np完全问题。在本工作中,我们定义反Tai映射M≥V1×V2为两个无序标记树之间的二元关系,使得任意两个(x,y),(x ',y ')∈M违背祖先关系,因而不能属于同一个Tai映射,即(x≤x '⇔y≰y ')∨(x '≤x⇔y '≰y),给定一个祖先顺序x<x ',即x是x '的祖先。在用整数规划方法求解最大权值Tai映射问题的切平面法中,出现了求最大权值反Tai映射的问题。我们给出了一个有效的多项式时间算法,用于在两棵树中的一棵是路径的情况下寻找最大权值的反Tai映射,并进一步展示了如何扩展这个结果,以便为两棵无序标记树的最优反Tai映射提供一个多项式可计算的下界。后一个结果源于反Tai映射的特殊类别,它由更严格的条件x ~ x '⇔y≁y '定义,其中~表示两个节点属于相同的根到叶路径。对于这个类,我们给出了一个有效的算法,可以精确地解决0 (|V1|2|V2|2)两个无序树上的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信