{"title":"Anti Tai mapping for unordered labeled trees","authors":"Mislav Blažević , Stefan Canzar , Khaled Elbassioni , Domagoj Matijević","doi":"10.1016/j.ipl.2023.106454","DOIUrl":null,"url":null,"abstract":"<div><p>The well-studied Tai mapping between two rooted labeled trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> defines a one-to-one mapping between nodes in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> that preserves ancestor relationship <span>[1]</span>. For unordered trees the problem of finding a maximum-weight Tai mapping is known to be NP-complete <span>[2]</span>. In this work, we define an anti Tai mapping <span><math><mi>M</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> as a binary relation between two unordered labeled trees such that any two </span><span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>∈</mo><mi>M</mi></math></span> violate ancestor relationship and thus cannot be part of the same Tai mapping, i.e. <span><math><mo>(</mo><mi>x</mi><mo>≤</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⇔</mo><mi>y</mi><mo>≰</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>∨</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≤</mo><mi>x</mi><mo>⇔</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≰</mo><mi>y</mi><mo>)</mo></math></span>, given an ancestor order <span><math><mi>x</mi><mo><</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> meaning that <em>x</em> is an ancestor of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span><span>. Finding a maximum-weight anti Tai mapping arises in the cutting plane method for solving the maximum-weight Tai mapping problem via integer programming. We give an efficient polynomial-time algorithm for finding a maximum-weight anti Tai mapping for the case when one of the two trees is a path and further show how to extend this result in order to provide a polynomially computable lower bound on the optimal anti Tai mapping for two unordered labeled trees. The latter result stems from the special class of anti Tai mappings defined by the more restricted condition </span><span><math><mi>x</mi><mo>∼</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⇔</mo><mi>y</mi><mo>≁</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, where ∼ denotes that two nodes belong to the same root-to-leaf path. For this class, we give an efficient algorithm that solves the problem exactly on two unordered trees in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106454"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000972","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The well-studied Tai mapping between two rooted labeled trees and defines a one-to-one mapping between nodes in and that preserves ancestor relationship [1]. For unordered trees the problem of finding a maximum-weight Tai mapping is known to be NP-complete [2]. In this work, we define an anti Tai mapping as a binary relation between two unordered labeled trees such that any two violate ancestor relationship and thus cannot be part of the same Tai mapping, i.e. , given an ancestor order meaning that x is an ancestor of . Finding a maximum-weight anti Tai mapping arises in the cutting plane method for solving the maximum-weight Tai mapping problem via integer programming. We give an efficient polynomial-time algorithm for finding a maximum-weight anti Tai mapping for the case when one of the two trees is a path and further show how to extend this result in order to provide a polynomially computable lower bound on the optimal anti Tai mapping for two unordered labeled trees. The latter result stems from the special class of anti Tai mappings defined by the more restricted condition , where ∼ denotes that two nodes belong to the same root-to-leaf path. For this class, we give an efficient algorithm that solves the problem exactly on two unordered trees in .
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.