On the complexity of co-secure dominating set problem

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
B.S. Panda , Soumyashree Rana , Sounaka Mishra
{"title":"On the complexity of co-secure dominating set problem","authors":"B.S. Panda ,&nbsp;Soumyashree Rana ,&nbsp;Sounaka Mishra","doi":"10.1016/j.ipl.2023.106463","DOIUrl":null,"url":null,"abstract":"<div><p>A set <span><math><mi>D</mi><mo>⊆</mo><mi>V</mi></math></span> of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is a dominating set of <em>G</em> if every vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><mi>D</mi></math></span> is adjacent to at least one vertex in <em>D</em>. A set <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi></math></span> is a co-secure dominating set (<span>CSDS</span>) of a graph <em>G</em> if <em>S</em> is a dominating set of <em>G</em> and for each vertex <span><math><mi>u</mi><mo>∈</mo><mi>S</mi></math></span> there exists a vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><mi>S</mi></math></span> such that <span><math><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></math></span> and <span><math><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>u</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>v</mi><mo>}</mo></math></span> is a dominating set of <em>G</em>. The minimum cardinality of a co-secure dominating set of <em>G</em> is the co-secure domination number and it is denoted by <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi><mi>s</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Given a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, the minimum co-secure dominating set problem (<span>Min Co-secure Dom</span>) is to find a co-secure dominating set of minimum cardinality. In this paper, we strengthen the inapproximability result of <span>Min Co-secure Dom</span> for general graphs by showing that this problem can not be approximated within a factor of <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>ln</mi><mo>⁡</mo><mo>|</mo><mi>V</mi><mo>|</mo></math></span><span> for perfect elimination bipartite graphs and star convex bipartite graphs unless </span><span>P=NP</span>. On the positive side, we show that <span>Min Co-secure Dom</span> can be approximated within a factor of <span><math><mi>O</mi><mo>(</mo><mi>ln</mi><mo>⁡</mo><mo>|</mo><mi>V</mi><mo>|</mo><mo>)</mo></math></span> for any graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>. For 3-regular and 4-regular graphs, we show that <span>Min Co-secure Dom</span> is approximable within a factor of <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, respectively. Furthermore, we prove that <span>Min Co-secure Dom</span> is <span>APX</span>-complete for 3-regular graphs.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106463"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023001060","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A set DV of a graph G=(V,E) is a dominating set of G if every vertex vVD is adjacent to at least one vertex in D. A set SV is a co-secure dominating set (CSDS) of a graph G if S is a dominating set of G and for each vertex uS there exists a vertex vVS such that uvE and (S{u}){v} is a dominating set of G. The minimum cardinality of a co-secure dominating set of G is the co-secure domination number and it is denoted by γcs(G). Given a graph G=(V,E), the minimum co-secure dominating set problem (Min Co-secure Dom) is to find a co-secure dominating set of minimum cardinality. In this paper, we strengthen the inapproximability result of Min Co-secure Dom for general graphs by showing that this problem can not be approximated within a factor of (1ε)ln|V| for perfect elimination bipartite graphs and star convex bipartite graphs unless P=NP. On the positive side, we show that Min Co-secure Dom can be approximated within a factor of O(ln|V|) for any graph G with δ(G)2. For 3-regular and 4-regular graphs, we show that Min Co-secure Dom is approximable within a factor of 83 and 103, respectively. Furthermore, we prove that Min Co-secure Dom is APX-complete for 3-regular graphs.

关于共安全控制集问题的复杂性
一组D⊆V图G = (V, E)是一组主导的G如果每个顶点V∈∖D相邻的至少一个顶点在一组S⊆V是一套co-secure支配(csd)的图G如果S是一个主导的G和每个顶点u∈存在一个顶点V∈∖年代,紫外线∈E和(S∖{你})∪{V}是一个主导的G的最小基数co-secure支配组G co-secure统治数量和它用γcs (G)。给定一个图G=(V,E),最小共安全支配集问题(Min co-secure Dom)是求一个最小基数的共安全支配集。本文通过证明对于完全消去二部图和星凸二部图,除非P=NP,否则该问题不能在(1−ε)ln (V)的因子内逼近,加强了一般图的最小共安全Dom的不可逼近性结果。在积极的方面,我们证明了对于任意δ(G)≥2的图G,最小共安全Dom可以在一个因子O(ln (V))内逼近。对于3正则图和4正则图,我们证明了最小共同安全Dom分别在83和103因子内近似。进一步证明了对于3正则图,最小共同安全Dom是apx完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信