{"title":"Modeling the dynamics of sub-millisecond electroadhesive engagement and release times","authors":"Ahad M. Rauf, Sean Follmer","doi":"10.1016/j.eml.2025.102382","DOIUrl":"10.1016/j.eml.2025.102382","url":null,"abstract":"<div><div>Electroadhesive clutches are electrically controllable switchable adhesives commonly used in soft robots and haptic user interfaces. They can form strong bonds to a wide variety of surfaces at low power consumption. However, electroadhesive clutches in the literature engage to and release from substrates several orders of magnitude slower than a traditional electrostatic model would predict. Large release times, in particular, can limit electroadhesion’s usefulness in high-bandwidth applications. We develop a novel electromechanical model for electroadhesion, factoring in polarization dynamics, the drive circuitry’s rise and fall times, and contact mechanics between the dielectric and substrate. We show in simulation and experimentally how different design parameters affect the engagement and release times of centimeter-scale electroadhesive clutches to metallic substrates, and we find that the model accurately captures the magnitude and trends of our experimental results. In particular, we find that higher drive frequencies, narrower substrate aspect ratios, and faster drive circuitry output stages enable significantly faster release times. The fastest clutches have engagement times less than <span><math><mrow><mn>15</mn><mspace></mspace><mi>μ</mi></mrow></math></span>s and release times less than <span><math><mrow><mn>875</mn><mspace></mspace><mi>μ</mi></mrow></math></span>s, which are 10<span><math><mo>×</mo></math></span> and 17.1<span><math><mo>×</mo></math></span> faster, respectively, than the best times found in prior literature on centimeter-scale electroadhesive clutches.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"79 ","pages":"Article 102382"},"PeriodicalIF":4.3,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144694475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shah Khalid , Jiyu Li , Han Chen , Longyu Pan , Lidan Tan , Ke Wu , Mingchao Liu , Liu Wang
{"title":"Modeling of magnetic soft catheters in contact with aneurysms","authors":"Shah Khalid , Jiyu Li , Han Chen , Longyu Pan , Lidan Tan , Ke Wu , Mingchao Liu , Liu Wang","doi":"10.1016/j.eml.2025.102385","DOIUrl":"10.1016/j.eml.2025.102385","url":null,"abstract":"<div><div>Magnetic soft catheters (MSCs) represent a breakthrough for remote navigation in minimally invasive endovascular procedures, especially in the coil embolization of cerebral aneurysms. However, current MSC models often neglect the contact interaction between the catheter and the aneurysm boundary during navigation, which limits their real-world use. To address this issue, this paper introduces a detailed theoretical model that considers the magneto-mechanical behavior of MSCs and the contact with aneurysms in endovascular environments. The navigation of MSCs through aneurysms of different shapes, such as circular, elliptic, and rounded-elliptic, is investigated to simulate the various anatomical constraints in clinical practice. We present a numerical framework based on polynomial approximations and weighted residuals to analyze the deflections of MSCs in contact with aneurysms under varying magnetic fields. A parametric analysis further explores the impact of magnetic field strength, magnetic field direction, catheter flexibility, and aneurysm wall shape, allowing adjustments to ensure safe navigation. We also examine how these factors affect MSC’s ability to navigate different aneurysm shapes, offering insights for optimizing design strategies for practical use. The proposed model is validated through finite element method (FEM) simulations and experiments, accurately predicting large deformations of MSCs in contact with aneurysms in endovascular environments. The results provide key guidelines for safely navigating MSCs, thus reducing the risk of incorrect coil placement during embolization and laying a solid foundation for the clinical application of MSCs in endovascular procedures.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"79 ","pages":"Article 102385"},"PeriodicalIF":4.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilong Chang , Guansheng Li , Jay Sim , George Em Karniadakis , Ruike Renee Zhao
{"title":"Clot treatment via spinning-induced fibrin microstructure densification and clot volume reduction","authors":"Yilong Chang , Guansheng Li , Jay Sim , George Em Karniadakis , Ruike Renee Zhao","doi":"10.1016/j.eml.2025.102391","DOIUrl":"10.1016/j.eml.2025.102391","url":null,"abstract":"<div><div>Blood clots, composed of red blood cells (RBCs) embedded within a fibrin network, can cause life-threatening conditions such as strokes and heart attacks. However, conventional thrombectomy techniques, such as aspiration or stent retrievers, often struggle with large or tough clots, limiting their clinical efficacy. The recently developed milli-spinner thrombectomy offers a breakthrough approach that fundamentally departs from these traditional methods. Instead of extracting the clot intact, the milli-spinner mechanically shrinks the clot by densifying its microstructure through the combined action of compression and shear forces, achieving up to 95 % volume reduction. This novel clot debulking strategy enables more effective clot removal and holds strong potential for significantly improved clinical outcomes in thrombectomy procedures. To uncover the underlying mechanisms and optimize performance, we combine in vitro experiments with dissipative particle dynamics (DPD) simulations for multiscale analysis of clot volume reduction and microstructural densification under integrated compression and shear. Experiments quantify macroscopic clot volume reduction under controlled loading, while simulations reveal microscale fibrin network densification and RBC release. This systematic study provides a quantitative understanding of how different loading modes alter clot microstructure across clot types. These findings lay the foundation for the rational design of next-generation thrombectomy systems, capable of mechanically reconfiguring clot microstructure in situ, offering enhanced efficacy and broader clinical applicability.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"79 ","pages":"Article 102391"},"PeriodicalIF":4.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brianna MacNider , Dana M. Dattelbaum , Nicholas Boechler , Carl Cady , Benjamin K. Derby , Saryu Fensin , Kwan-Soo Lee , Jihyeon Kim , Sushan Nakarmi , Nitin Daphalapurkar
{"title":"Influence of strain-rate on the response of elastomeric architected materials","authors":"Brianna MacNider , Dana M. Dattelbaum , Nicholas Boechler , Carl Cady , Benjamin K. Derby , Saryu Fensin , Kwan-Soo Lee , Jihyeon Kim , Sushan Nakarmi , Nitin Daphalapurkar","doi":"10.1016/j.eml.2025.102389","DOIUrl":"10.1016/j.eml.2025.102389","url":null,"abstract":"<div><div>Architected materials have shown substantial promise in impact mitigation and protective applications, and there has accordingly been great interest in better characterizing their response at elevated strain rates due to impact. There remains ambiguity regarding the contribution of inertial and material responses to strain rate sensitivity, and, in particular, when these effects begin to gain dominance in the impact response of an architected material. The response of soft polymer architected materials as a function of strain rate, in particular, has been little investigated. We characterize the experimental impact response of four soft polymer architected lattice geometries across varying strain rates in the intermediate strain rate regime (∼10<sup>3</sup> s<sup>−1</sup>) using split-Hopkinson pressure bar loading and high speed video characterization of the resulting deformation fields. Our results highlight the interplay of influence between constituent material, lattice geometry, length scale, and strain rate in determining the onset of significant inertia effects.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"79 ","pages":"Article 102389"},"PeriodicalIF":4.3,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144670476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyong Li , Yanwen Jia , Fang Su , Juzheng Chen , Xiewen Wen , Wenjun Liang , Hao Wu , Yang Lu
{"title":"3D-printed silica glass micro-mechanical device (MMD) for in situ mechanical testing","authors":"Ziyong Li , Yanwen Jia , Fang Su , Juzheng Chen , Xiewen Wen , Wenjun Liang , Hao Wu , Yang Lu","doi":"10.1016/j.eml.2025.102384","DOIUrl":"10.1016/j.eml.2025.102384","url":null,"abstract":"<div><div>Micro-electro-mechanical systems (MEMS)-based devices offers a premium solution for versatile <em>in situ</em> micro-/nano- mechanical characterizations of low-dimensional materials, however, they are primarily manufactured using costly top-down silicon photolithography microfabrication processes. Previously, we demonstrated that high-resolution bottom-up 3D printing technologies can be used for printing such micro-mechanical device (MMD), but those photopolymer-based devices are of low-modulus and less stable for long-term use. Here, based on our recently developed high-resolution glass 3D printing technique, we show that silica glass MMD with high definition and performance. The versatility of high-resolution additive manufacturing, combined with the long-term mechanical stability as well as exceptional mechanical properties of high-performance glass, enables the fabrication of MMDs with more desirable characteristics. This facilitates the in-situ micro-/nano- mechanical characterizations on novel materials. The tensile behaviors of microfibers and nanofilms, as demonstrated by our developed MMDs, showcase the potential for a groundbreaking approach to <em>in situ</em> micro-/nano- mechanical testing through the integration of 3D printing, high-performance glass, and MEMS technologies.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102384"},"PeriodicalIF":4.3,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144604666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel mechanical criterion and interpretation for dual stress plateau phenomenon in NiTi alloy under tension","authors":"Xi Qie, Jianping Lin","doi":"10.1016/j.eml.2025.102380","DOIUrl":"10.1016/j.eml.2025.102380","url":null,"abstract":"<div><div>Numerous studies have investigated Lüders band and transformation stress plateau in NiTi. However, localized plastic deformation (LPD) of martensite and the stress drop before the second stress plateau remain poorly understood. In this study, drawing an analogy to Lüders band propagation, we observed LPD band nucleation propagation in a microstructure with 253 nm grain size by in-situ Digital Image Correlation (DIC). Based on displacement conservation, we propose a mechanical criterion for inelastic loading in NiTi. This criterion accurately predicts the stress drop associated with LPD band nucleation and movement, providing a theoretical foundation. Furthermore, we systematically explain, for the first time, the abnormal strain softening effect responsible for the second stress plateau during martensitic plastic deformation. By offering new insights into martensitic transformation and LPD mechanisms, this research advances the understanding of dual stress plateaus and LPD in NiTi.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102380"},"PeriodicalIF":4.3,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144604665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Po-Ting Lin , Congyuan Zhang , Yichun Tang , Hanwen Fan , Kaleb Barker , Nathan Harward , Ecem Kilic , Zachary Rickmeyer , Gregory S. Lewis , April D. Armstrong , Jing Du , Yuxiao Zhou
{"title":"Full-field strain distribution in non-arthritic and arthritic glenoid bones before and after implant placement measured by digital volume correlation method","authors":"Po-Ting Lin , Congyuan Zhang , Yichun Tang , Hanwen Fan , Kaleb Barker , Nathan Harward , Ecem Kilic , Zachary Rickmeyer , Gregory S. Lewis , April D. Armstrong , Jing Du , Yuxiao Zhou","doi":"10.1016/j.eml.2025.102377","DOIUrl":"10.1016/j.eml.2025.102377","url":null,"abstract":"<div><div>Loosening of the shoulder joint (glenohumeral joint) implant is a leading cause of failure in total shoulder replacement surgery, primarily due to mechanical strain concentration in the bone. This study combines <em>in situ</em> mechanical testing with micro-X-ray computed tomography (micro-CT) to apply physiologically realistic loads on non-arthritic and arthritic glenoid bones, the socket portion of the shoulder joint, before and after implant placement, and uses digital volume correlation (DVC) to analyze 3D deformation and strain distributions within the glenoid bones. The results show that degenerative changes in bone quality and structure associated with different arthritis subtypes redistribute strain under anterior and posterior eccentric loading. Strain distributions were compared across arthritis subtypes before and after implant placement, with results indicating that implant placement often helps alleviate strain concentrations. Additionally, the percentage of bone volume experiencing strain beyond the physiological strain range typically encountered during daily activities was assessed. While the proportion of bone exceeding this strain threshold was comparable between non-arthritic and arthritic glenoid bones post-implantation, strain magnitude was notably higher in arthritic specimens, potentially increasing the risk of implant loosening. These findings provide insights for optimizing preoperative planning and implant design tailored to patient-specific bone characteristics, potentially enhancing implant longevity and reducing the risk of post-surgical loosening in patients with glenohumeral arthritis.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102377"},"PeriodicalIF":4.3,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144580475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhonggang Wang , Xinying Lu , Yiming Zhao , Kexin Zeng , Ziping Lei , Tiecheng Wang , Zhendong Li , Zichao Guo
{"title":"Harnessing nonlocal coupling effect to enhance broadband sound insulation in gradient acoustic metamaterial","authors":"Zhonggang Wang , Xinying Lu , Yiming Zhao , Kexin Zeng , Ziping Lei , Tiecheng Wang , Zhendong Li , Zichao Guo","doi":"10.1016/j.eml.2025.102376","DOIUrl":"10.1016/j.eml.2025.102376","url":null,"abstract":"<div><div>While local-resonance acoustic metamaterials with parallel arrangements provide a feasible means for subwavelength control of sound waves, their practical applications are severely limited by the presence of multiple insulation valleys between the resonance effects. A new design framework for gradient-channel acoustic metamaterials is introduced by harnessing the nonlocal coupling effect. This mechanism strengthens the interaction between adjacent unit cells, with nonlocal regions acting as secondary acoustic sources. Consequently, phase cancellation is extended throughout the metamaterial, eliminating significant sound insulation valleys. Our theoretical, numerical, and experimental investigations reveal that the proposed nonlocal metamaterial enhances sound insulation by 15.8 % over the 400–2500 Hz range compared to conventional parallel metamaterials at the deep-subwavelength scale. Furthermore, a bilayer metamaterial, combining local and nonlocal designs, achieves an average sound transmission loss of 32.8 dB. By exploiting the nonlocal effect, this work significantly expands the design space for multi-channel acoustic metamaterials, enabling efficient manipulation of low-frequency waves over a wide bandwidth. It provides a novel route for developing ultrathin, high-efficiency sound insulators.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102376"},"PeriodicalIF":4.3,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nusrat Jahan Salim, Ignacio Arretche, Kathryn H. Matlack
{"title":"Magnetic field induced toughening mechanisms in isotropic and anisotropic soft magnetoactive elastomers","authors":"Nusrat Jahan Salim, Ignacio Arretche, Kathryn H. Matlack","doi":"10.1016/j.eml.2025.102368","DOIUrl":"10.1016/j.eml.2025.102368","url":null,"abstract":"<div><div>Soft magnetoactive elastomers (sMAEs) are promising multifunctional composites obtained by embedding soft-magnetic particles into an elastomer matrix. Under external magnetic fields, these composites exhibit tunability in mechanical and rheological properties, including stiffness modulation and controllable deformation. Despite growing interest in their magneto-mechanical capabilities, the fracture behavior of sMAEs under magnetic fields remains entirely unexplored. Here, we present the first comprehensive experimental characterization of the fracture toughness and underlying fracture mechanisms in sMAEs subjected to magnetic fields. The study includes different volume fractions of particles, with particles arranged both randomly and aligned, parallel and perpendicular to the loading direction. Experimental results show that in the presence of a magnetic field, fracture toughness increases by 42% for anisotropic sMAEs and 23% for isotropic sMAEs, compared to their unmagnetized states. With the aid of the load-stretch curves, spatial distribution of strain from Digital Image Correlation (DIC), and optical microscopy images of the test specimens, we identify two key mechanisms driving the observed toughening: bulk magneto-mechanical induced stiffening and/or local magneto-mechanical coupling near the crack tip that delays catastrophic failure. This work bridges a critical knowledge gap and expands the design space for durable and adaptive multifunctional magneto-responsive composites.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102368"},"PeriodicalIF":4.3,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144480749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}