面向泊松比可调的多组分超材料中欧拉-伯努利光束原理的扩展

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingyi Zhang , Yuheng Liu , Haibao Lu , Ran Tao
{"title":"面向泊松比可调的多组分超材料中欧拉-伯努利光束原理的扩展","authors":"Jingyi Zhang ,&nbsp;Yuheng Liu ,&nbsp;Haibao Lu ,&nbsp;Ran Tao","doi":"10.1016/j.eml.2025.102347","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a multi-component mechanical metamaterial was proposed to achieve tunable nominal modulus and Poisson’s ratio to extend the potential and practical applications in smart materials and structures. Based on the Euler-Bernoulli beam theory, a universal model was formulated for the multi-component metamaterial to explore the constitutive relationship between the model parameters and mechanical properties. The theoretical model reveals that the Poisson’s ratio of the multi-component metamaterial could be quantitatively regulated over a broad range by manipulating the moduli of its constituent components. On this basis, a bi-component metamaterial composed of polylactic acid (PLA) and thermoplastic polyurethane (TPU), featuring distinct temperature-dependent moduli and geometric configurations, was manufactured and exhibited thermally tunable mechanical behavior. Parametric finite element simulations were conducted to investigate the synergistic effect of temperature-dependent moduli and geometric parameters on the stable mechanical behaviors of the bi-component metamaterial, with the results validated by experimental measurements. This study examines the design principle that combines material parameters (temperature-dependent moduli) and structural parameters (geometric parameters) for the multi-component mechanical metamaterial. The methodologies and insights presented in this paper provide new perspectives and technical approaches for the innovative applications of metamaterials in aerospace, biomedical, and microelectronic fields.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102347"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended Euler-Bernoulli beam principle in multi-component metamaterial towards tunable Poisson’s ratio\",\"authors\":\"Jingyi Zhang ,&nbsp;Yuheng Liu ,&nbsp;Haibao Lu ,&nbsp;Ran Tao\",\"doi\":\"10.1016/j.eml.2025.102347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a multi-component mechanical metamaterial was proposed to achieve tunable nominal modulus and Poisson’s ratio to extend the potential and practical applications in smart materials and structures. Based on the Euler-Bernoulli beam theory, a universal model was formulated for the multi-component metamaterial to explore the constitutive relationship between the model parameters and mechanical properties. The theoretical model reveals that the Poisson’s ratio of the multi-component metamaterial could be quantitatively regulated over a broad range by manipulating the moduli of its constituent components. On this basis, a bi-component metamaterial composed of polylactic acid (PLA) and thermoplastic polyurethane (TPU), featuring distinct temperature-dependent moduli and geometric configurations, was manufactured and exhibited thermally tunable mechanical behavior. Parametric finite element simulations were conducted to investigate the synergistic effect of temperature-dependent moduli and geometric parameters on the stable mechanical behaviors of the bi-component metamaterial, with the results validated by experimental measurements. This study examines the design principle that combines material parameters (temperature-dependent moduli) and structural parameters (geometric parameters) for the multi-component mechanical metamaterial. The methodologies and insights presented in this paper provide new perspectives and technical approaches for the innovative applications of metamaterials in aerospace, biomedical, and microelectronic fields.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"77 \",\"pages\":\"Article 102347\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431625000598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多组分机械超材料,以实现可调的标称模量和泊松比,以扩大智能材料和结构的潜力和实际应用。基于欧拉-伯努利梁理论,建立了多组分超材料的通用模型,探讨了模型参数与力学性能之间的本构关系。理论模型表明,多组分超材料的泊松比可以通过控制其组成组分的模量在较宽的范围内进行定量调节。在此基础上,制备了一种由聚乳酸(PLA)和热塑性聚氨酯(TPU)组成的双组分超材料,该材料具有不同的温度依赖模量和几何构型,并表现出热可调的力学行为。通过参数化有限元模拟研究了温度相关模量和几何参数对双组分超材料稳定力学行为的协同效应,并通过实验验证了结果。本研究考察了多组分机械超材料的材料参数(温度相关模量)和结构参数(几何参数)相结合的设计原则。本文提出的方法和见解为超材料在航空航天、生物医学和微电子领域的创新应用提供了新的视角和技术途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extended Euler-Bernoulli beam principle in multi-component metamaterial towards tunable Poisson’s ratio
In this paper, a multi-component mechanical metamaterial was proposed to achieve tunable nominal modulus and Poisson’s ratio to extend the potential and practical applications in smart materials and structures. Based on the Euler-Bernoulli beam theory, a universal model was formulated for the multi-component metamaterial to explore the constitutive relationship between the model parameters and mechanical properties. The theoretical model reveals that the Poisson’s ratio of the multi-component metamaterial could be quantitatively regulated over a broad range by manipulating the moduli of its constituent components. On this basis, a bi-component metamaterial composed of polylactic acid (PLA) and thermoplastic polyurethane (TPU), featuring distinct temperature-dependent moduli and geometric configurations, was manufactured and exhibited thermally tunable mechanical behavior. Parametric finite element simulations were conducted to investigate the synergistic effect of temperature-dependent moduli and geometric parameters on the stable mechanical behaviors of the bi-component metamaterial, with the results validated by experimental measurements. This study examines the design principle that combines material parameters (temperature-dependent moduli) and structural parameters (geometric parameters) for the multi-component mechanical metamaterial. The methodologies and insights presented in this paper provide new perspectives and technical approaches for the innovative applications of metamaterials in aerospace, biomedical, and microelectronic fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信