Jiahai Yuan , Qilin Mou , Ke Du , Baodi Ding , Yuxuan Zhang , Zifeng Wu , Kai Zhang , Haonan Zhang
{"title":"Integrated resource strategic planning considering inter-regional flexibility supply–demand balance: A case study for the Northwest and Central Grid in China","authors":"Jiahai Yuan , Qilin Mou , Ke Du , Baodi Ding , Yuxuan Zhang , Zifeng Wu , Kai Zhang , Haonan Zhang","doi":"10.1016/j.seta.2024.104019","DOIUrl":"10.1016/j.seta.2024.104019","url":null,"abstract":"<div><div>China’s rapid advancement in renewable energy and regional power grid interconnection has highlighted the need for enhanced system flexibility to ensure the security and stability of regional power systems. To address this issue, this study presents a new framework for integrated resource strategic planning for inter-regional flexibility (IRSP-IF). This framework evaluates inter-regional flexibility demand and optimizes power resource allocation across regions. The northwest and central grids in China are used as case studies to evaluate inter-regional power resource allocation from 2022 to 2035. This analysis considers key factors including flexibility supply–demand balance constraints, regional power grid interconnections, and time scales for assessing flexibility demand. The results show that incorporating these constraints and interconnections into the strategic power plan enables greater integration of renewable energy while reducing both installed capacity and the overall cost of regional power resources. In the S3 scenario, which includes inter-regional flexibility supply–demand balance, the total integration of wind and solar power increases by 1.54%. Additionally, the combined average annual fixed and operating costs decrease by 1.44 billion yuan compared to the S2 scenario, which only considers single-region flexibility supply–demand balance. Furthermore, evaluating flexibility demand at a shorter time scale results in a higher proportion of flexible resources, with an average annual growth of 24.43%.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104019"},"PeriodicalIF":7.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermo-electric behavior analysis and coupled model characterization of 21,700 cylindrical ternary lithium batteries affected by cyclic aging","authors":"Haopeng Chen , Tianshi Zhang , Qing Gao , Haizhen Huang","doi":"10.1016/j.seta.2024.104013","DOIUrl":"10.1016/j.seta.2024.104013","url":null,"abstract":"<div><div>In order to achieve a balance between the precision of thermal behavior simulation of lithium batteries affected by cyclic aging and the practicality of engineering popularization and application, a simple degraded battery thermal model needs to be constructed. In this article, a characterization approach for the coupled battery thermo-electric model affected by cyclic aging is designed. This method is suitable for simulating the thermal behavior of lithium degraded batteries with different materials and shapes under different environmental temperatures. This paper introduces the idea by taking the 21,700 cylindrical ternary lithium batteries as an example. Firstly, based on the interaction mechanism between the growth of the solid electrolyte interface film on the battery negative electrode surface at the microscopic level and the battery thermoelectric coupling characteristics at the macro level, the paper constructs a theoretical model of the degraded battery. Further, it conducts experiments to analyze the battery charging and discharging behaviors in the process of cyclic aging. Based on experimental data, this paper conducts multiple fitting calculations to extract essential modeling parameters. Subsequently, this paper builds the battery physical model in the simulation software based on the above modeling parameters. It applies the battery physical model to simulate the thermal characteristics and temperature field. Then, it conducts experiments to demonstrate the precision of the model. This paper uses the infrared imaging technique to visualize and analyze temperature field variations on the battery surface. And it uses thermocouple temperature sensors to capture the battery surface temperature changes. The simulation results are compared with the experimental data, the errors are less than 5 %. Compared with other existing battery thermal models, the model of this paper is more suitable for engineering popularization and application of thermal behavior simulation of lithium batteries affected by cyclic aging.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104013"},"PeriodicalIF":7.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asit Mohanty , A.K. Ramasamy , Renuga Verayiah , Satabdi Bastia , Sarthak Swaroop Dash , Manzoore Elahi M. Soudagar , T.M. Yunus Khan , Erdem Cuce
{"title":"Smart grid and application of big data: Opportunities and challenges","authors":"Asit Mohanty , A.K. Ramasamy , Renuga Verayiah , Satabdi Bastia , Sarthak Swaroop Dash , Manzoore Elahi M. Soudagar , T.M. Yunus Khan , Erdem Cuce","doi":"10.1016/j.seta.2024.104011","DOIUrl":"10.1016/j.seta.2024.104011","url":null,"abstract":"<div><div>The rapid technological advancements in the electrical energy sector are generating a significant volume of data that profoundly influences the operations of system operators, grid users, and GENCOs. In this context, Big Data emerges as a valuable tool for state estimation, addressing control issues, facilitating forecasting, and enhancing the involvement of various market agents and players in the energy sector. Intelligent or smart devices, utilizing information and communication technologies, oversee and manage equipment across the entire energy generation to utilization spectrum. To earn the distinction of being “intelligent or smart,” substantial data exchange occurs between grid instruments and project or business entities. This exchange of information, tailored to consumption and application needs, facilitates cost-effective optimized bidirectional power flow between power plants and end-use customers. For the effective control, monitoring, and coordination of smart appliances within a smart grid subsystem; the exchange of data is indispensable. Energy companies, however, confront challenges in efficiently managing vast amounts of data. The optimal and apt implementation of smart-grid big data analytics becomes imperative to successfully navigate and address these challenges. This work sheds light on the execution and utilization of BDA (Big Data Analysis) in the smart grid. The advantages, challenges, and consequences of implementing these techniques; and strategies for the computation and transmission of data are proposed here.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104011"},"PeriodicalIF":7.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patryk Urbański , Yuhan Huang , Dawid Gallas , John L. Zhou , Jerzy Merkisz
{"title":"Real-world assessment of the energy consumption and emissions performance of a novel diesel-electric dual-drive locomotive","authors":"Patryk Urbański , Yuhan Huang , Dawid Gallas , John L. Zhou , Jerzy Merkisz","doi":"10.1016/j.seta.2024.104017","DOIUrl":"10.1016/j.seta.2024.104017","url":null,"abstract":"<div><div>The huge demands for better energy efficiency and cleaner air from the public have driven governments to implement increasingly stricter emission standards. However, their implementation was not conducted uniformly among transport sectors. While road vehicles are now tested both in laboratory and real-world, rail vehicles are still only required to be tested in stationary conditions that have been shown to poorly reflect their real operation conditions. Therefore, this study aimed to assess the performance of a novel diesel-electric dual-drive locomotive in real-driving conditions. Significant variations were found for the tested locomotive in terms of both the share of idling time and the share of time the engine operated beyond the type-approval tests. The tested locomotive spent a similar share of time idling (24 %) as at its intended speed (60–90 km/h). It was found that 37 % of the particulate matter emissions were released during stops. Reducing the amount of time when the vehicle was accelerating at more than 0.5 m/s<sup>2</sup>, especially at speeds over 60 km/h, could reduce 50 % carbon monoxide emissions and 40 % hydrocarbon emissions. The findings suggest that incorporating the practice of eco-driving should be considered to significantly reduce the pollutant emissions from the railway sector.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104017"},"PeriodicalIF":7.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiafu Yang , Xiu Wang , Jun-Xian Pei, Yan Yan, Wen-Quan Wang
{"title":"A new strategy for reducing pressure fluctuation of Francis turbine by bionic modification of local components","authors":"Jiafu Yang , Xiu Wang , Jun-Xian Pei, Yan Yan, Wen-Quan Wang","doi":"10.1016/j.seta.2024.104014","DOIUrl":"10.1016/j.seta.2024.104014","url":null,"abstract":"<div><div>Long term operation of hydroelectric units in low load conditions can induce large-scale blade vortices, swirling vortex ropes in the draft tube, and low-frequency high amplitude pressure fluctuation. These phenomena will cause adverse consequences such as excessive vibration of the unit and blade breakage of the runner. Taking inspiration from the protuberances of the leading edge of a humped whale flipper, the present study firstly proposes bionic modifications of guide vanes and draft tube to suppress high-amplitude pressure fluctuations for Francis turbine. Numerical simulations of transient flow characteristics of the prototype unit (PU), the bionic guide vane unit (BG), and the bionic draft tube unit (BDG) under two low load conditions are conducted. Results indicated that the bionic draft tube has a good effect on suppressing pressure fluctuations in the vaneless area and draft tube. Under the <em>Q/Q<sub>BEF</sub></em> = 0.41 working condition, BDG causes the main frequency amplitude of pressure fluctuation at the center point of the draft tube inlet to change from 8000.2 Pa to 390.9 Pa, a decrease of 95.11 %. Under the <em>Q/Q<sub>BEF</sub></em> = 0.57 working condition, BDG causes the maximum decrease rate of the main frequency amplitude in the draft tube to be 60.5 %. The reducing effect in BDG of monitoring points in the guide vane area has reached over 43 %. Under low load conditions, the vortices near the wall in the draft tube of BDG are intercepted by bionic structures, reducing the vortex scale and helping to prevent the generation of large swirling vortex ropes. The bionic guide vanes have a significant control effect on pressure pulsation in the the guide vane and vaneless regions, although perform poorly in the draft tube.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104014"},"PeriodicalIF":7.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Zhao , Delan Zhu , Nazarov Khudayberdi , Changxin Liu
{"title":"Research on photovoltaic water pumping system based on valve opening model","authors":"Hang Zhao , Delan Zhu , Nazarov Khudayberdi , Changxin Liu","doi":"10.1016/j.seta.2024.104016","DOIUrl":"10.1016/j.seta.2024.104016","url":null,"abstract":"<div><div>Photovoltaic water pumping system (PVWPS) is an important way to use solar energy. In order to further improve the solar energy utilization rate of PVWPS, this study proposes a valve opening model, which solves the problem of more solar energy waste caused by fixed pipeline characteristics under different irradiation intensities. Firstly, the theoretical calculation formula of pipeline flow is deduced according to the balance relationship between photovoltaic energy supply and energy demand of water lifting pipeline in PVWPS, and its working principle is expounded. Finally, the function model of pipeline flow-valve opening-radiation intensity is derived from the cycle test of PVWPS, and the PVWPS with water lifting height of 10 m, 12 m and 14 m is verified by all-day test. Compared with the unregulated valve, the cumulative water extraction of the PVWPS with three water lifting heights after valve regulation is increased by 15.85 %, 18.06 % and 80.71 % respectively, indicating that the cumulative water extraction of the PVWPS can be effectively improved by adjusting the valve opening. This study provides a new idea for improving the utilization rate of solar energy in PVWPS.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104016"},"PeriodicalIF":7.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction notice to “Robust bidding strategy of interconnected multi-carrier systems in the electricity markets under the uncertainty in electricity load” [Sustain. Energy Technol. Assessm. 57 (2023) 103245]","authors":"Zhouding Liu , Morteza Nazari-Heris","doi":"10.1016/j.seta.2024.104015","DOIUrl":"10.1016/j.seta.2024.104015","url":null,"abstract":"","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104015"},"PeriodicalIF":7.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating solid oxide electrolysis cells and H2-O2 combustion for low-emission high-temperature heating with heat pump in the chemical industry","authors":"Shuhao Zhang, Nan Zhang","doi":"10.1016/j.seta.2024.104010","DOIUrl":"10.1016/j.seta.2024.104010","url":null,"abstract":"<div><div>Low-emission high-temperature heating could be achieved by exploiting electrical heating, clean fuel, or carbon capture. However, it is difficult to replace current coal or natural gas furnaces in some places because the high-temperature thermal demand needs combustion. In the present work, the green hydrogen production process by solid oxide electrolysis cells (SOEC) and H<sub>2</sub>-O<sub>2</sub> combustion is integrated into ethylene production. The working conditions of electrolyzer and furnace are analyzed. The SOEC should work over 800°C to keep endothermic state no matter the current density. To produce the hydrogen of 80 MW heat value, the electric consumption is at least 69.4 MW. With the high-temperature waste heat of 7.76 MW, an additional 3 MW power is required for water electrolysis. The heat released during condensation of combustion products is 30.52 MW, much higher than 13.19 MW from SOEC products. Therefore, the heat pump is necessary to recycle the waste heat of water condensation and generate steam as the electrolysis ingredient and cooling medium, which saves 63 % of energy. Although the total energy consumption increases by 11.23 % from 80.23 MW to 89.24 MW, the CO<sub>2</sub> emission drops by 84.28 %.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104010"},"PeriodicalIF":7.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Songhan Jiang, Ke Peng, Xueshen Zhao, Jiajia Chen, Yan Jiang, Yuxin Liu
{"title":"A high-frequency reduced-order model for parameters optimization of AC/DC distribution systems considering random disturbances","authors":"Songhan Jiang, Ke Peng, Xueshen Zhao, Jiajia Chen, Yan Jiang, Yuxin Liu","doi":"10.1016/j.seta.2024.103969","DOIUrl":"10.1016/j.seta.2024.103969","url":null,"abstract":"<div><div>Accompanying the rapid development of AC/DC distribution systems, along with the random disturbances introduced by a significant number of distributed generations and loads, the difficulty of system stability analysis has increased. The phenomenon of DC bus voltage instability has become severe, affecting the safe and stable operation of power systems. This paper focuses on the research of multi-terminal AC/DC distribution systems. A reduced-order method for multi-terminal distribution systems is proposed. Through parameter equivalent transformation, the system model is simplified while maintaining its dynamic characteristics. Parameter sensitivity analysis is utilized to identify key parameters influencing the system’s dynamic behavior, achieving an analytical expression of the system’s dynamic characteristics. And stability domain analysis is applied to delineate the variations in system dynamic behavior and responses to random disturbances under different parameter settings. Then a multi-parameter optimization method is designed to enhance system stability while achieving fast system response. Finally, theoretical analysis is validated through software simulation and hardware-in-the-loop experiments.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 103969"},"PeriodicalIF":7.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and optimization of biomethanation of rice straw with biochar supplementation using response surface methodology and machine learning","authors":"Sachin Krushna Bhujbal, Pooja Ghosh, Virendra Kumar Vijay","doi":"10.1016/j.seta.2024.104006","DOIUrl":"10.1016/j.seta.2024.104006","url":null,"abstract":"<div><div>Anaerobic digestion (AD) of lignocellulosic wastes offers sustainable waste management with the production of renewable energy and nutrient-rich bio-slurry. However, the chemical recalcitrant structure of lignocellulosic waste hinders its hydrolysis and biomethanation under AD. Biochar addition has been reported to alleviate toxicity inhibition and improve the degradability of lignocellulosic wastes, biogas and methane yield, and stability of the AD process. Therefore, in this study<strong>,</strong> substrate loading (% total solids (TS)), inoculum loading (% TS), and biochar dosage (w/v%) were optimized to maximize the methane yield by using central composite design (CCD) based response surface methodology (RSM) and genetic algorithm (GA). The second-order quadratic model was established by CCD-RSM, which revealed the notable interaction between substrate loading and biochar dosage (p-value < 0.0001) and between inoculum loading and biochar dosage (p-value < 0.05). Based on the root mean square error (RMSE) and coefficient of determination (R<sup>2</sup>) values, the cumulative methane yield (CMY) prediction performance of the artificial neural network (ANN) (RMSE = 0.876, R<sup>2</sup> = 0.9894) was more reliable and accurate than CCD-RSM (RMSE = 3.34, R<sup>2</sup> = 0.9956). The GA optimal conditions showed 8.6% higher methane yield (293.7 ± 7.26 mL/g VS) than the CCD-RSM (270.2 ± 10.69 mL/g VS). The methane yield obtained at optimal conditions of GA was 54.9% higher than the control. The CCD-RSM and ANN-GA can also be used for process modeling and optimization in other contexts. The optimal outcomes obtained in this study could pave the way for the prediction and operation of continuous AD of rice straw supplemented with additives such as biochar for large-scale bioenergy production.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104006"},"PeriodicalIF":7.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}