基于生成式预训练变压器的锂离子电池充电状态预测

IF 7 2区 工程技术 Q1 ENERGY & FUELS
Dali Zhou , Yufeng Sun , Qin Hu , Ying Shi , Jicheng Yu , Jian Zhang
{"title":"基于生成式预训练变压器的锂离子电池充电状态预测","authors":"Dali Zhou ,&nbsp;Yufeng Sun ,&nbsp;Qin Hu ,&nbsp;Ying Shi ,&nbsp;Jicheng Yu ,&nbsp;Jian Zhang","doi":"10.1016/j.seta.2025.104526","DOIUrl":null,"url":null,"abstract":"<div><div>Battery swapping stations face considerable challenges due to heterogeneous battery types, inconsistent initial states, and complex spatiotemporal patterns in BMS data. To address these issues, we propose BatteryGPT, a frozen pre-trained Generative Pre-trained Transformer (GPT) framework tailored for lithium-ion battery energy forecasting. Instead of retraining the entire model, our approach fine-tunes only the input embedding and output projection layers, enabling efficient adaptation to varied battery conditions. To enhance temporal feature representation, we introduce a contrastive temporal embedding module that compresses multivariate sequences while retaining essential dynamic features. Furthermore, we design a temporal suffix alignment strategy to align time-series data with textual prompts, improving the model’s capacity for temporal reasoning. Experiments show that BatteryGPT achieves an average 55.52% improvement in prediction accuracy over LSTM and conventional deep learning baselines. Instruction-based evaluations further demonstrate its end-to-end applicability in dynamic charging management scenarios. These results highlight the potential of integrating large language models with time-series adaptation techniques for industrial energy forecasting tasks.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"82 ","pages":"Article 104526"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative pre-trained transformers (GPT) for lithium-ion battery charging state prediction in battery swapping station\",\"authors\":\"Dali Zhou ,&nbsp;Yufeng Sun ,&nbsp;Qin Hu ,&nbsp;Ying Shi ,&nbsp;Jicheng Yu ,&nbsp;Jian Zhang\",\"doi\":\"10.1016/j.seta.2025.104526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Battery swapping stations face considerable challenges due to heterogeneous battery types, inconsistent initial states, and complex spatiotemporal patterns in BMS data. To address these issues, we propose BatteryGPT, a frozen pre-trained Generative Pre-trained Transformer (GPT) framework tailored for lithium-ion battery energy forecasting. Instead of retraining the entire model, our approach fine-tunes only the input embedding and output projection layers, enabling efficient adaptation to varied battery conditions. To enhance temporal feature representation, we introduce a contrastive temporal embedding module that compresses multivariate sequences while retaining essential dynamic features. Furthermore, we design a temporal suffix alignment strategy to align time-series data with textual prompts, improving the model’s capacity for temporal reasoning. Experiments show that BatteryGPT achieves an average 55.52% improvement in prediction accuracy over LSTM and conventional deep learning baselines. Instruction-based evaluations further demonstrate its end-to-end applicability in dynamic charging management scenarios. These results highlight the potential of integrating large language models with time-series adaptation techniques for industrial energy forecasting tasks.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"82 \",\"pages\":\"Article 104526\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138825003571\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138825003571","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于电池类型异构、初始状态不一致以及BMS数据中复杂的时空模式,电池交换站面临着相当大的挑战。为了解决这些问题,我们提出了BatteryGPT,这是一个为锂离子电池能量预测量身定制的冷冻预训练生成预训练变压器(GPT)框架。我们的方法不需要重新训练整个模型,而是只对输入嵌入层和输出投影层进行微调,从而有效地适应不同的电池条件。为了增强时间特征表示,我们引入了一个对比时间嵌入模块,该模块在保留基本动态特征的同时压缩多变量序列。此外,我们设计了一种时间后缀对齐策略,将时间序列数据与文本提示对齐,提高了模型的时间推理能力。实验表明,与LSTM和传统深度学习基线相比,BatteryGPT的预测精度平均提高了55.52%。基于指令的评估进一步证明了其在动态收费管理场景中的端到端适用性。这些结果突出了将大型语言模型与时间序列自适应技术集成到工业能源预测任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative pre-trained transformers (GPT) for lithium-ion battery charging state prediction in battery swapping station
Battery swapping stations face considerable challenges due to heterogeneous battery types, inconsistent initial states, and complex spatiotemporal patterns in BMS data. To address these issues, we propose BatteryGPT, a frozen pre-trained Generative Pre-trained Transformer (GPT) framework tailored for lithium-ion battery energy forecasting. Instead of retraining the entire model, our approach fine-tunes only the input embedding and output projection layers, enabling efficient adaptation to varied battery conditions. To enhance temporal feature representation, we introduce a contrastive temporal embedding module that compresses multivariate sequences while retaining essential dynamic features. Furthermore, we design a temporal suffix alignment strategy to align time-series data with textual prompts, improving the model’s capacity for temporal reasoning. Experiments show that BatteryGPT achieves an average 55.52% improvement in prediction accuracy over LSTM and conventional deep learning baselines. Instruction-based evaluations further demonstrate its end-to-end applicability in dynamic charging management scenarios. These results highlight the potential of integrating large language models with time-series adaptation techniques for industrial energy forecasting tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Technologies and Assessments
Sustainable Energy Technologies and Assessments Energy-Renewable Energy, Sustainability and the Environment
CiteScore
12.70
自引率
12.50%
发文量
1091
期刊介绍: Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信