Lei Qin , Weikai Wang , Jun Matsushima , Haifei Lin , Siheng Lin , Zitong Xue , Xian Zhang
{"title":"Heat transfer-deformation characteristics and fracture damage analysis during LN2 freeze-thaw process in different rank coals","authors":"Lei Qin , Weikai Wang , Jun Matsushima , Haifei Lin , Siheng Lin , Zitong Xue , Xian Zhang","doi":"10.1016/j.gete.2024.100607","DOIUrl":"10.1016/j.gete.2024.100607","url":null,"abstract":"<div><div>Exploring the heat transfer and deformation characteristics of coal bodies of different coal ranks during the freeze-thaw process is of significant importance for analyzing the fracture mechanism under the effect of liquid nitrogen (LN<sub>2</sub>). This experiment targets lignite, bituminite, and anthracite under both saturated and dry conditions. A real-time temperature-strain monitoring system was employed to observe the heat transfer and deformation characteristics of coal samples with different ranks throughout the freeze-thaw cycle. Additionally, a nuclear magnetic resonance system was utilized to examine the characteristics of pore damage before and after fracturing. The findings reveal: (1) During the freeze-thaw process, the absolute value of the temperature evolution rate for dry coal samples shows a negative correlation with coal rank, indicating a close link between temperature diffusion and intrinsic coal properties like oxygen content and porosity. (2) For saturated coal samples, the absolute value of the temperature change rate during freezing decreases as the coal rank increases, with the opposite trend observed during thawing. The phase change effect of water in fractures during freezing can enhance internal temperature diffusion in the coal body, while it acts as an inhibitor during thawing. (3) Based on the trend of strain fluctuations, the coal body deformation process during the freeze-thaw cycle can be segmented into seven stages, summarizing the general mechanisms of deformation failure. (4) Under saturated conditions, the amplitude of elastic deformation for each sample is negatively correlated with coal rank, with the sequence for dry coal samples being bituminite > anthracite > lignite. (5) The formation of a sealed space at the beginning of freezing is identified as a necessary condition for deformation during the freeze-thaw process, with the formation and strength of the sealed space depending on the temperature diffusion rate, moisture content, and inherent properties of the coal sample.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100607"},"PeriodicalIF":3.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mouadh Rafai , Diana Salciarini , Philip J. Vardon
{"title":"Full-scale in-situ tests on a displacement cast in situ energy pile: Effects of cyclic thermal loads under different mechanical load levels on pile stress and strain","authors":"Mouadh Rafai , Diana Salciarini , Philip J. Vardon","doi":"10.1016/j.gete.2024.100606","DOIUrl":"10.1016/j.gete.2024.100606","url":null,"abstract":"<div><div>Numerous full-scale in situ tests have been conducted to assess the effect of thermal cycles on the pile response. However, those studies investigated the response of only precast and cast in-situ energy piles, with limited focus on the impact of the applied mechanical load on the pile response. This study presents the results of a field test conducted on a new type of energy pile, i.e. a displacement cast in-situ energy pile in multilayered soft soils, subjected to different fixed mechanical loads while undergoing simultaneous thermal cycles. Four tests were carried out, each corresponding to various axial loads ranging from 0 % to 60 % of the pile’s estimated bearing capacity. After applying the axial load on the pile head (0 %, 30 %, 40 %, or 60 % of the bearing capacity), the pile was subjected to up to ten thermal cycles. The highest magnitudes of thermal axial strains were observed near the pile top due to the lowest restraint provided by the made ground layer in all tests. Under zero (0 %) mechanical load, the thermal axial strains near the pile head were elastic and recoverable, while residual strain was observed near the toe. Under reasonable working mechanical loads (30 %, 40 %, or 60 %) residual strains were observed near both the pile head and the toe, with higher residual strains observed under higher mechanical loads. The results indicate that the cyclic thermal loadings could induce an increase in the compressive stress in the energy pile, attributed to the drag-down effects of the surrounding soil. The compressive stress induced by drag-down effects counteracts thermally induced tensile stress and thus leads to an insignificant effect on the energy pile during cooling. A limited impact of the shaft capacity was observed and was mainly attributed to the drag-down of the surrounding soil and thermal creep along the pile-soil interface.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100606"},"PeriodicalIF":3.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roman Markiewicz , Adrian Thylbert Brunner , Johannes Pistrol , Dietmar Adam
{"title":"Field investigations on the thermo-mechanical behavior of a partially activated energy pile in Miocene sediments","authors":"Roman Markiewicz , Adrian Thylbert Brunner , Johannes Pistrol , Dietmar Adam","doi":"10.1016/j.gete.2024.100605","DOIUrl":"10.1016/j.gete.2024.100605","url":null,"abstract":"<div><div>The City of Vienna, as one of the largest public clients in Austria, initiated a research project to determine the load-bearing behavior of various foundation elements in typical Viennese soils. Numerous large-scale tests were carried out on bored piles, micro piles, anchors, and jet grouted columns. In addition, two energy piles were installed in different soil layers to investigate their behavior under mechanical and thermal loading in each soil layer separately. This paper discusses the energy pile in the Miocene sediments, which consist mainly of silty fine sand and some sandy silt. The energy pile – fully instrumented with strain gauges, extensometers, heat gauges and optical fiber sensors – was loaded for two and a half months. The mechanical load was kept constant throughout the thermal cycles to determine the response of the pile to thermal loads. The measured temperature data were used in numerical back-calculations to determine the thermal parameters of the soil layers and the concrete. Based on the measured strain and deformation data, the deformation behavior of the energy pile due to the thermal load was investigated. Finally, a static pile load test was carried out on the energy pile and the results are compared with those of the conventional reference piles installed in the vicinity, which have not been subjected to thermal loading. The test demonstrated that, after several weeks of cyclic thermal loading, the energy pile exhibited more favorable load-deformation behavior compared to conventional reference piles.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100605"},"PeriodicalIF":3.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermomechanical response and crack evolution of sandstone at elevated temperatures","authors":"Amulya Ratna Roul , Vikram Vishal","doi":"10.1016/j.gete.2024.100603","DOIUrl":"10.1016/j.gete.2024.100603","url":null,"abstract":"<div><div>Understanding the thermomechanical response of rock at high temperatures is crucial for various energy applications such as underground coal gasification and geothermal systems. The study investigated the effects of temperature, mineral composition, and grain size on crack initiation (CI) and crack damage (CD) thresholds in Jodhpur sandstones using uniaxial compressive strength with acoustic emission, Brazilian tensile strength, and thermogravimetric analysis subjected to elevated temperatures. The study revealed distinct patterns in crack initiation stress threshold ratios (CISTR) and crack damage stress threshold ratios (CDSTR) influenced by mineral composition and grain size under temperature treatments. Ferruginous quartz arenite exhibited an inverse relationship between quartz content and crack initiation/damage stress thresholds, while siliceous quartz arenite and subarkose showed a positive correlation. The established variation is attributed to the differing grain boundary strengths among the minerals. Comparative analysis of crack thresholds with the minerals, excluding quartz and feldspar, revealed complex relationships with clay and other minerals. Finer-grained sandstones showed direct proportionality in CI and CISTR with clay content, while coarser sandstones exhibited an inverse relationship. Additionally, the study highlighted differential trends in toughness parameters and CISTR, emphasizing the role of grain size and heat-treatment conditions in governing stress thresholds. Significant chemical changes, including quartz phase shifts and kaolinite/muscovite dehydroxylation, occurred in sandstones at 500–600°C. The presence of kaolinite/hematite in ferruginous quartz arenite caused the increased mass loss in pure O<sub>2</sub> due to kaolinite breakdown, while siliceous quartz arenite exhibited a greater mass loss in standard conditions. The findings suggest that quartz content does not consistently enhance rock strength under heat treatment, particularly in the presence of significant clay minerals, leading to an inverse quartz-rock strength relationship in ferruginous quartz arenites. The study provides valuable insights into the thermomechanical behavior of sandstones, which is crucial for assessing rock stability and durability in energy applications.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100603"},"PeriodicalIF":3.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Yao , Xuan Li , Guilherme Corrêa Soares , Mikko Hokka
{"title":"Quantification of energy consumed in simulated percussive drilling process using dynamic indentation experiment","authors":"Wei Yao , Xuan Li , Guilherme Corrêa Soares , Mikko Hokka","doi":"10.1016/j.gete.2024.100604","DOIUrl":"10.1016/j.gete.2024.100604","url":null,"abstract":"<div><div>The high cost of drilling deep wells is the main barrier to the widespread exploitation of deep geothermal energy. Percussive drilling is one of the significant drilling technologies used in energy exploration projects. However, there is no good quantitative understanding of how much energy in percussive drilling is consumed in pulverization, heating, the kinetic energy of particles, acoustic emission, etc. In this study, energy efficiency is quantitatively investigated to understand the percussive drilling process better. The dynamic percussive drilling was evaluated using a modified split Hopkinson pressure bar (SHPB) system and non-contact measurements. The amount of energy dissipated in different processes and the overall energy efficiency was estimated for Kuru granite, Balmoral granite, and Kivijärvi gabbro. The energy spent on the kinetic energy <em>E</em><sub><em>k</em></sub> of fragments was evaluated using a high-speed camera, whereas the energy consumed on heat or the thermal energy <em>E</em><sub><em>t</em></sub> was obtained by high-speed infrared imaging. The cracking energy <em>E</em><sub><em>c</em></sub> was measured by using the surface energy of rock and the total newly created surface areas. The results indicate that the fragment size distribution of these three rocks generally varies with the penetration speed, and the fragmentation level of these rocks increases with the penetration speed. The input energy and the energy consumption grow with the increase of the penetration speed. The proportions of <em>E</em><sub><em>t</em></sub>, <em>E</em><sub><em>k</em></sub>, and <em>E</em><sub><em>c</em></sub> in the total energy consumption for these three rocks increase with the penetration speed. The energy efficiency obtained from the dynamic indentation experiments for the three rocks generally increases with the penetration speed and almost approaches a limit value when the penetration speed is high. A model is improved to describe the relationship between energy efficiency and penetration speed quantitatively. Therefore, the penetration process should be optimized to balance the high drilling efficiency and the low energy consumption.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100604"},"PeriodicalIF":3.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonia Nousiou, Erich Pimentel, Georgios Anagnostou
{"title":"Experimental investigation into the effect of porosity on the strains developing during anhydrite to gypsum transformation","authors":"Antonia Nousiou, Erich Pimentel, Georgios Anagnostou","doi":"10.1016/j.gete.2024.100601","DOIUrl":"10.1016/j.gete.2024.100601","url":null,"abstract":"<div><div>The swelling of anhydritic claystones often leads to severe tunnel damage. Even though this phenomenon has gained significant scientific interest, particularly in the last decades, there are still open questions which introduce uncertainties in tunnel design. One question concerns the strains developing during the anhydrite to gypsum transformation (AGT). These depend, among other factors, on whether the gypsum crystals grow within the available pore space or whether they tend to push the particles apart, leading to an expansion of the matrix and, in turn, larger macroscopic strains. The experimental investigations of this paper aim to assess the influence of the initial porosity on the strains developing during AGT. Specimens consisting of highly compacted anhydrite and kaolin powders are created with varying initial porosities between 0.22 and 0.35. It is concluded that, <em>ceteris paribus</em>, the strains developing during AGT decreases with increasing initial porosity. The results also indicate that in the case of high initial porosity the gypsum crystals grow in the available pore space, thus decreasing the porosity, while in the case of low initial porosity, gypsum growth leads to an increase of the pore space. The results are applicable to porous media where crystallisation may occur within the pores.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100601"},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omid Habibzadeh-Bigdarvish , Gang Lei , Hussein Hashemi Senejani , Alireza Fakhrabadi , Anand J. Puppala , Xinbao Yu
{"title":"Geothermal bridge deck de-icing using a novel external hydronic heating system with insulated pipe loops","authors":"Omid Habibzadeh-Bigdarvish , Gang Lei , Hussein Hashemi Senejani , Alireza Fakhrabadi , Anand J. Puppala , Xinbao Yu","doi":"10.1016/j.gete.2024.100602","DOIUrl":"10.1016/j.gete.2024.100602","url":null,"abstract":"<div><div>A geothermal-based external hydronic heating system (EHHS) has been developed as an effective solution to address the de-icing needs of in-service bridges with minimum negative impacts on the structure, traffic, and environment. This paper discusses the implementation and operational response of a new design of the EHHS in which rather than the whole bottom surface of the bridge deck, only the hydronic heating loops are covered with insulation material and provides the accessibility for visual inspection of the bridge deck. The first full-scale external hydronic heating system with an insulated loop (EHHS-IL) was installed on a mock-up bridge deck in north Texas and tested in a record snowstorm with a low ambient temperature of −19.5 ˚C. The system operated in three different stages, and the inlet fluid temperature was adjusted according to the weather forecast. Overall, during a 10-day operation, three ice and snow events and 209 hours of freezing ambient temperature were observed. The heating system was able to maintain the heated bridge deck surface temperature above freezing except for 1.3 hours when the −19.5 ˚C low ambient temperature coincided with snowfall. The average surface heat flux during the test varied from 34.8 – 84 W/m<sup>2,</sup> and the average heating efficiency was estimated at 17.7 %. The seasonal performance factor (SPF) of the system remains consistently greater than 1 during the heating period. Also, 422 kWh of electrical energy was consumed during 10 days of operation by the entire geothermal de-icing system. This new geothermal bridge deicing system offers a practical solution to icy bridges by retrofitting.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100602"},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingfei Su , Chenglong Wang , Abdelmalek Bouazza , Gangqiang Kong , Xuanming Ding
{"title":"Vertical dynamic responses of model energy piles","authors":"Lingfei Su , Chenglong Wang , Abdelmalek Bouazza , Gangqiang Kong , Xuanming Ding","doi":"10.1016/j.gete.2024.100598","DOIUrl":"10.1016/j.gete.2024.100598","url":null,"abstract":"<div><div>This paper explores the dynamic responses of model energy piles embedded in sand subjected to the combined effects of temperature change and cyclic mechanical loading. The same type of cyclic loading was applied separately on three single energy piles with temperature differences (ΔT) of −20 ℃, +20 ℃ and 0 ℃, respectively. The results show that after 2000 cycles of mechanical loading, the cumulative displacement of the energy pile increased under cooling conditions and decreased under heating conditions. The tip resistance of a single energy pile increased under both conditions, especially during cooling.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100598"},"PeriodicalIF":3.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz
{"title":"Shear-induced fluid localization, episodic fluid release and porosity wave in deformable low-permeability rock salt","authors":"Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz","doi":"10.1016/j.gete.2024.100600","DOIUrl":"10.1016/j.gete.2024.100600","url":null,"abstract":"<div><div>Understanding fluid distribution and migration in deformable low-permeability rock salt is critical for geologic disposal of nuclear waste. Field observations indicate that fluids in a salt formation are likely compartmentalized into relatively isolated patches and fluid release from such a formation is generally episodic. The underlying mechanism for these phenomena remains poorly understood. In this paper, a hydrological-mechanical model is formulated for fluid percolation in a rock salt formation under a deviatoric stress. Using a linear stability analysis, we show that a porosity wave (a train of alternating high and low porosity pockets) can emerge from positive feedbacks among intergranular wetting, grain boundary weakening and shear-induced material dilatancy. Fluid localization or episodic release can be viewed as a stationary or propagating porosity wave respectively. Fluid pockets transported via a porosity wave remain relatively isolated with minimal mixing between neighboring pockets. We further show that the velocity of fluid flow can be significantly enhanced by the emergence of a porosity wave. The concept and the related model presented in this paper provide a unified consistent explanation for the key features observed in fluid flow in rock salt. The similar process is expected to occur in other deformable low-permeability media such as shale and partially molten rocks under a deviatoric stress. Thus, the result presented here has an important implication to hydrocarbon expulsion from shale source rocks, radioactive waste isolation in a tight rock repository, and caprock integrity of a subsurface gas (CO<sub>2</sub>, H<sub>2</sub> or CH<sub>4</sub>) storage system. It may also help develop a new engineering approach to fluid injection into or extraction from unconventional reservoirs.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100600"},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing swelling-induced damage in shale samples during triaxial testing","authors":"E. Crisci , R. Ewy , A. Ferrari , S.B. Giger","doi":"10.1016/j.gete.2024.100599","DOIUrl":"10.1016/j.gete.2024.100599","url":null,"abstract":"<div><div>In shale testing, understanding the impact of effective stress and saturation conditions is crucial for accurate material behaviour assessment and parameter determination. In some cases, saturation in triaxial testing starts at low effective stress before ramping up for shearing. However, when in contact with water (or saline water), shales are prone to swelling, particularly at low effective stress levels, which can induce fissures and alter material properties. This study investigates the influence of fluid saturation strategies and stress/pressure variations on the mechanical behaviour of shales, particularly under low effective confinement. Building upon the comprehensive testing campaign (>140 tests) in Crisci et al. (2024), additional tests were conducted on Opalinus Clay shale, focusing on sample saturation methods and loading histories before shearing. The conditions under which tested specimens experience damage were detected through diagnostic indicators such as differences in stress path and lower strength and stiffness compared to intact specimens with identical basic properties. Micro CT scanning confirms that damage is related to the development of fissures. The volumetric changes in specimens were quantified throughout the testing phases and thresholds for tolerable strains and effective stresses, specific to this material, were established. Comparative analysis with Opalinus Clay from shallower depths and other shales globally revealed consistent findings. Notably, it is shown that, for all shale types analyzed, a linear failure envelope emerges in the low to intermediate effective stress regime when filtering out \"damaged\" specimens. This suggests that non-linear failure envelopes observed in some cases may stem from exposing specimens to low effective stress before shearing.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100599"},"PeriodicalIF":3.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}