Jia Liu , Wenqi Zhang , Yi Xue , Huimin Wang , Shi-Tong Li , Yun Zhang , Weihua Li
{"title":"考虑离散裂缝网络的热-水-力-化学耦合模型碳酸盐岩地热储层酸压评价","authors":"Jia Liu , Wenqi Zhang , Yi Xue , Huimin Wang , Shi-Tong Li , Yun Zhang , Weihua Li","doi":"10.1016/j.gete.2025.100704","DOIUrl":null,"url":null,"abstract":"<div><div>In the development of carbonate geothermal reservoirs, the implementation of acid fracturing technology is common and essential, effectively enhancing reservoir permeability. It encompasses a sequence of intricate phenomena including solute migration, acid-rock reaction, heat transfer, and deformation. Herein, a comprehensive thermo-hydro-mechanical-chemical (THMC) coupling model considering field-scale discrete fracture networks (DFNs) is established for the process. With the thin elastic layer and fracture element assumptions, the corrosion and deformation of fractures are considered simultaneously. Additionally, the model accounts for the corrosion effects of both bedrock and fracture surfaces, and tracks the evolution of fracture aperture and matrix porosity. Using the proposed model, this study investigates acid fracturing in varying reservoir and operational conditions. It is found that the connectivity of DFN can influence the seepage path of acid fluid, therefore affecting acid concentration transport, which has a significant impact on the reconstruction of reservoir acidification. The acidification effectiveness nonlinearly positively correlates to the rate and concentration of acid injection, while the change of chemical aperture is negatively correlated to the initial fracture aperture. Reservoir temperature has a limited influence on acidification outcomes. The scientific insights provided here are valuable in steering the optimization of acid fracturing in carbonatite reservoirs.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"43 ","pages":"Article 100704"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of acid fracturing in carbonatite geothermal reservoirs based on a coupled thermo-hydro-mechanical-chemical model considering discrete fracture networks\",\"authors\":\"Jia Liu , Wenqi Zhang , Yi Xue , Huimin Wang , Shi-Tong Li , Yun Zhang , Weihua Li\",\"doi\":\"10.1016/j.gete.2025.100704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the development of carbonate geothermal reservoirs, the implementation of acid fracturing technology is common and essential, effectively enhancing reservoir permeability. It encompasses a sequence of intricate phenomena including solute migration, acid-rock reaction, heat transfer, and deformation. Herein, a comprehensive thermo-hydro-mechanical-chemical (THMC) coupling model considering field-scale discrete fracture networks (DFNs) is established for the process. With the thin elastic layer and fracture element assumptions, the corrosion and deformation of fractures are considered simultaneously. Additionally, the model accounts for the corrosion effects of both bedrock and fracture surfaces, and tracks the evolution of fracture aperture and matrix porosity. Using the proposed model, this study investigates acid fracturing in varying reservoir and operational conditions. It is found that the connectivity of DFN can influence the seepage path of acid fluid, therefore affecting acid concentration transport, which has a significant impact on the reconstruction of reservoir acidification. The acidification effectiveness nonlinearly positively correlates to the rate and concentration of acid injection, while the change of chemical aperture is negatively correlated to the initial fracture aperture. Reservoir temperature has a limited influence on acidification outcomes. The scientific insights provided here are valuable in steering the optimization of acid fracturing in carbonatite reservoirs.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"43 \",\"pages\":\"Article 100704\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825000693\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000693","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evaluation of acid fracturing in carbonatite geothermal reservoirs based on a coupled thermo-hydro-mechanical-chemical model considering discrete fracture networks
In the development of carbonate geothermal reservoirs, the implementation of acid fracturing technology is common and essential, effectively enhancing reservoir permeability. It encompasses a sequence of intricate phenomena including solute migration, acid-rock reaction, heat transfer, and deformation. Herein, a comprehensive thermo-hydro-mechanical-chemical (THMC) coupling model considering field-scale discrete fracture networks (DFNs) is established for the process. With the thin elastic layer and fracture element assumptions, the corrosion and deformation of fractures are considered simultaneously. Additionally, the model accounts for the corrosion effects of both bedrock and fracture surfaces, and tracks the evolution of fracture aperture and matrix porosity. Using the proposed model, this study investigates acid fracturing in varying reservoir and operational conditions. It is found that the connectivity of DFN can influence the seepage path of acid fluid, therefore affecting acid concentration transport, which has a significant impact on the reconstruction of reservoir acidification. The acidification effectiveness nonlinearly positively correlates to the rate and concentration of acid injection, while the change of chemical aperture is negatively correlated to the initial fracture aperture. Reservoir temperature has a limited influence on acidification outcomes. The scientific insights provided here are valuable in steering the optimization of acid fracturing in carbonatite reservoirs.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.