BiofilmPub Date : 2025-03-26DOI: 10.1016/j.bioflm.2025.100276
N. Rackov , N. Janßen , A. Akkache , B. Drotleff , B. Beyer , E. Scoppola , N.E. Vrana , R. Hengge , C.M. Bidan , S. Hathroubi
{"title":"Bacterial cellulose: Enhancing productivity and material properties through repeated harvest","authors":"N. Rackov , N. Janßen , A. Akkache , B. Drotleff , B. Beyer , E. Scoppola , N.E. Vrana , R. Hengge , C.M. Bidan , S. Hathroubi","doi":"10.1016/j.bioflm.2025.100276","DOIUrl":"10.1016/j.bioflm.2025.100276","url":null,"abstract":"<div><div>Bacterial cellulose (BC), a promising versatile biopolymer produced by bacteria, has an immense potential in various industries. However, large-scale application is hindered by high production costs and low yields. This study introduces an innovative approach combining a prolonged static culturing with intermittent harvesting. This novel strategy resulted in a significant increase in BC productivity, achieving up to a threefold rise in biomass within the first 35 days. Prolonged growth and continuous harvesting not only enhanced productivity but also led to a mutant strain M2 with higher yields and distinct BC architecture. Mechanical and structural analyses revealed that sequential harvest correlated with increasing crystallinity, altered crystallite sizes, and improved stiffness of the dry material during initial cycles, potentially reflecting bacteria adaptation to resources limitations. Genomic analysis identified key mutations in the M2 strain, including one in the RelA/SpoT enzyme, suggesting a reduced stringent response that promotes growth under nutrient-limiting conditions. Untargeted metabolomic profiling revealed deregulation of several metabolites, including a significant difference in fatty acid metabolites that could potentially influence membrane fluidity and BC secretion. Such metabolic and structural adaptations enhance BC production efficiency and material properties. These findings highlight the potential of intermittent harvesting for sustainable BC production and the role of bacterial adaptation in tuning BC properties. Further research will optimize this strategy and expand its applications in developing tailored biomaterials for diverse industries.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100276"},"PeriodicalIF":5.9,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-03-24DOI: 10.1016/j.bioflm.2025.100275
Marina A. George , David McGiffin , Anton Y. Peleg , Roey Elnathan , David M. Kaye , Yue Qu , Nicolas H. Voelcker
{"title":"Nanowire arrays with programmable geometries as a highly effective anti-biofilm surface","authors":"Marina A. George , David McGiffin , Anton Y. Peleg , Roey Elnathan , David M. Kaye , Yue Qu , Nicolas H. Voelcker","doi":"10.1016/j.bioflm.2025.100275","DOIUrl":"10.1016/j.bioflm.2025.100275","url":null,"abstract":"<div><div>Biofilm-related microbial infections are the Achilles’ heel of many implantable medical devices. Surface patterning with nanostructures in the form of vertically aligned silicon (Si) nanowires (VA-SiNWs) holds promise to prevent these often “incurable” infections. In this study, we fabricated arrays of highly ordered SiNWs varying in three geometric parameters, including height, pitch size, and tip diameter (sharpness). Anti-infective efficacies of fabricated SiNW arrays were assessed against representative laboratory reference bacterial strains, <em>Staphylococcus aureus</em> ATCC 25923 and <em>Escherichia coli</em> ATCC 25922, using a modified microwell biofilm assay representing microorganism-implant interactions at a liquid-solid interface. To further understand the role of individual geometric parameters to the SiNW-induced bacterial killing, SiNW arrays with stepwise changes in individual geometric parameters were compared. The force that NWs applied on bacterial cells was mathematically calculated. Our results suggested that NWs with specific geometries were able to kill adherent bacterial cells and prevent further biofilm formation on biomaterial surfaces. Tip diameter and pitch size appeared to be key factors of nanowires predetermining their anti-infectiveness. Mechanistic investigation found that tip diameter and pitch size co-determined the pressure that NWs put on the cell envelope. The most effective anti-infective NWs fabricated in our study (50 nm in tip diameter and 400 nm in pitch size for <em>S. aureus</em> and 50 nm in tip diameter and 800 nm in pitch size for <em>E. coli</em>) put pressures of approximately 2.79 Pa and 8.86 Pa to the cell envelop of <em>S. aureus</em> and <em>E. coli</em>, respectively, and induced cell lyses. In addition, these NWs retained their activities against clinical isolates of <em>S. aureus</em> and <em>E. coli</em> from patients with confirmed device-related infections and showed little toxicity against human fibroblast cells and red blood cells.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100275"},"PeriodicalIF":5.9,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-03-14DOI: 10.1016/j.bioflm.2025.100271
Cristina I. Amador , Henriette L. Røder , Jakob Herschend , Thomas R. Neu , Mette Burmølle
{"title":"Decoding the impact of interspecies interactions on biofilm matrix components","authors":"Cristina I. Amador , Henriette L. Røder , Jakob Herschend , Thomas R. Neu , Mette Burmølle","doi":"10.1016/j.bioflm.2025.100271","DOIUrl":"10.1016/j.bioflm.2025.100271","url":null,"abstract":"<div><div>Multispecies biofilms are complex communities where extracellular polymeric substances (EPS) shape structure, adaptability, and functionality. However, characterizing the components of EPS, particularly glycans and proteins, remains a challenge due to the diverse bacterial species present and their interactions within the matrix. This study examined how interactions between different species affect EPS component composition and spatial organization. We analyzed a consortium of four bacterial soil isolates that have previously demonstrated various intrinsic properties in biofilm communities: <em>Microbacterium oxydans</em>, <em>Paenibacillus amylolyticus</em>, <em>Stenotrophomonas rhizophila</em>, and <em>Xanthomonas retroflexus</em>. We used fluorescence lectin binding analysis to identify specific glycan components and <em>meta</em>-proteomics to characterize matrix proteins in mono- and multispecies biofilms. Our results revealed diverse glycan structures and composition, including fucose and different amino sugar-containing polymers, with substantial differences between monospecies and multispecies biofilms. In isolation, <em>M. oxydans</em> produced galactose/N-Acetylgalactosamine network-like structures and influenced the matrix composition in multispecies biofilms. Proteomic analysis revealed presence of flagellin proteins in <em>X. retroflexus</em> and <em>P. amylolyticus</em>, particularly in multispecies biofilms. Additionally, surface-layer proteins and a unique peroxidase were identified in <em>P. amylolyticus</em> multispecies biofilms, indicating enhanced oxidative stress resistance and structural stability under these conditions. This study highlights the crucial role of interspecies interactions in shaping the biofilm matrix, as well as the production of glycans and proteins, thereby enhancing our understanding of biofilm complexity.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100271"},"PeriodicalIF":5.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-03-13DOI: 10.1016/j.bioflm.2025.100274
Erika Muratov , Julian Keilholz , Ákos T. Kovács , Ralf Moeller
{"title":"The biofilm matrix protects Bacillu subtilis against hydrogen peroxide","authors":"Erika Muratov , Julian Keilholz , Ákos T. Kovács , Ralf Moeller","doi":"10.1016/j.bioflm.2025.100274","DOIUrl":"10.1016/j.bioflm.2025.100274","url":null,"abstract":"<div><div>Biofilms formed by <em>Bacillus subtilis</em> confer protection against environmental stressors through extracellular polysaccharides (EPS) and sporulation. This study investigates the roles of these biofilm components in resistance to hydrogen peroxide, a common reactive oxygen species source and disinfectant. Using wild-type and mutant strains deficient in EPS or sporulation, biofilm colonies were cultivated at various maturation stages and exposed to hydrogen peroxide. EPS-deficient biofilms exhibited reduced resilience, particularly in early stages, highlighting the structural and protective importance of the matrix. Mature biofilms demonstrated additional protective mechanisms, potentially involving TasA protein fibers and/or the biofilm surface layer (BslA). In contrast, sporulation showed limited contribution to hydrogen peroxide resistance, as survival was primarily matrix-dependent. These findings underscore the necessity of targeting EPS and other matrix components in anti-biofilm strategies, suggesting that hydrogen peroxide-based disinfection could be enhanced by combining it with complementary sporicidal treatments. This study advances our understanding of biofilm resilience, contributing to the development of more effective sterilization protocols.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100274"},"PeriodicalIF":5.9,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-03-12DOI: 10.1016/j.bioflm.2025.100272
Samuel J.T. Wardell , Deborah B.Y. Yung , Josefine E. Nielsen , Rajesh Lamichhane , Kristian Sørensen , Natalia Molchanova , Claudine Herlan , Jennifer S. Lin , Stefan Bräse , Lyn M. Wise , Annelise E. Barron , Daniel Pletzer
{"title":"A biofilm-targeting lipo-peptoid to treat Pseudomonas aeruginosa and Staphylococcus aureus co-infections","authors":"Samuel J.T. Wardell , Deborah B.Y. Yung , Josefine E. Nielsen , Rajesh Lamichhane , Kristian Sørensen , Natalia Molchanova , Claudine Herlan , Jennifer S. Lin , Stefan Bräse , Lyn M. Wise , Annelise E. Barron , Daniel Pletzer","doi":"10.1016/j.bioflm.2025.100272","DOIUrl":"10.1016/j.bioflm.2025.100272","url":null,"abstract":"<div><div>Antibiotic-resistant bacterial infections are a significant clinical challenge, especially when involving multiple species. Antimicrobial peptides and their synthetic analogues, peptoids, which target bacterial cell membranes as well as intracellular components, offer potential solutions. We evaluated the biological activities of novel peptoids TM11-TM20, which include an additional charged <em>N</em>Lys residue, against multidrug-resistant <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em>, both <em>in vitro</em> and <em>in vivo</em>. Building on insights from previously reported compounds TM1-TM10, the lipo-peptoid TM18, which forms self-assembled ellipsoidal micelles, demonstrated potent antimicrobial, anti-biofilm, and anti-abscess activity. Transcriptome sequencing (RNA-seq) revealed that TM18 disrupted gene expression pathways linked to antibiotic resistance and tolerance, and biofilm formation in both pathogens. Under dual-species conditions, TM18 induced overlapping but attenuated transcriptional changes, suggesting a priming effect that enhances bacterial tolerance. In a murine skin infection model, TM18 significantly reduced dermonecrosis and bacterial burden in mono-species infections. When combined with the antibiotic meropenem, they synergistically nearly cleared co-infections. Our findings highlight that TM18 has potential as a novel therapeutic for combating antibiotic-resistant pathogens and associated biofilm-driven tolerance.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100272"},"PeriodicalIF":5.9,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strain-dependent emergence of aminoglycoside resistance in Escherichia coli biofilms","authors":"Raphaël Charron , Pierre Lemée , Antoine Huguet , Ornella Minlong , Marine Boulanger , Paméla Houée , Christophe Soumet , Romain Briandet , Arnaud Bridier","doi":"10.1016/j.bioflm.2025.100273","DOIUrl":"10.1016/j.bioflm.2025.100273","url":null,"abstract":"<div><div>In most Earth environments, bacteria predominantly exist within surface-associated communities known as biofilms, where they are embedded in an extracellular matrix. These collective structures play a critical role in bacterial physiology and significantly shape their evolutionary trajectories, contributing to the development of antimicrobial resistance and enhancing bacterial resilience to treatments, with profound implications for public health. This study assessed the impact of the biofilm lifestyle on the emergence of resistance to gentamicin, an aminoglycoside antibiotic, in one laboratory reference strain and seven <em>Escherichia coli</em> isolates from food-processing environments. Throughout a one-month evolution experiment, we observed that certain strains showed a markedly higher emergence of gentamicin-resistant variants in biofilms than in planktonic states, with the emergence of stable variants being closely linked to biofilm maturation. Genomic and phenotypic analyses of gentamicin-resistant (GenR) variants uncovered varied adaptive strategies among the strains. GenR variants from two food-processing isolates (Ec709 and Ec478) displayed point mutations in genes associated with central carbon metabolism (<em>aceE</em>, <em>ygfZ</em>, …) and cell respiration (<em>atpG</em>, <em>cydA</em>, …), while retaining relative growth and colonization capacities. Conversely, GenR variants from the reference strain (Ec1655) adapted preferentially through large genomic deletions, including consistent loss of the peptide transporter gene <em>sbmA,</em> significantly altering cellular fitness. These findings highlight the complexity of adaptive evolution in biofilms and underscore the importance of investigating diverse strains to grasp the full spectrum of adaptation in natural bacterial populations.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100273"},"PeriodicalIF":5.9,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-03-06DOI: 10.1016/j.bioflm.2025.100270
Björn van Marwick , Tatyana N. Sevastyanova , Felix Wühler , Barbara Schneider-Wald , Cornelia Loy , Sascha Gravius , Matthias Rädle , Andreas Schilder
{"title":"A novel MIR imaging approach for precise detection of S. epidermidis biofilms in seconds","authors":"Björn van Marwick , Tatyana N. Sevastyanova , Felix Wühler , Barbara Schneider-Wald , Cornelia Loy , Sascha Gravius , Matthias Rädle , Andreas Schilder","doi":"10.1016/j.bioflm.2025.100270","DOIUrl":"10.1016/j.bioflm.2025.100270","url":null,"abstract":"<div><div>The impact of microbial biofilm growth poses a threat to both human health and the performance of industrial systems, manifesting as a global crisis with noteworthy economic implications for modern society. Exploring new methods and alternative approaches for the detection of biofilm signatures are imperative for developing optimized and cost-effective strategies that can help to identify early-stage biofilm formation. Clinical diagnostic technologies are constantly looking for more affordable, practical and faster methods of prevention and detection of chronic infections in periprosthetic joint infections (PJIs), which are often characterized by biofilm formation on implant surfaces. <em>Staphylococcus epidermidis (SE)</em> is especially known for its strong biofilm production and is considered a leading cause of biomaterial-associated infections, including PJIs. Implant-associated infections are severe and difficult to treat, therefore it is crucial to continue identifying bacterial biomarkers that contribute to its structural stability and attachment to implant surfaces. This study presents a pioneering approach for fast spectral detection of biofilm formation with a novel mid-infrared (MIR) scanning system. To highlight the advantages of our MIR system, we performed a comparative analysis with measurements from a commercially available Fourier-transform infrared (FTIR) scanner. We have assessed SE biofilms grown for 3 days comparing the processing times between a commercially available infrared (IR) scanning system (∼8 h/cm<sup>2</sup>), and our innovative scanning approach with rapid self-built MIR detection, achieving a reduction in scanning time to seconds. K-means clustering analysis identified pronounced differences in distribution of clusters, representing a significant variation between biofilm producing (RP62A) and non-biofilm producing (ATCC 12228) bacterial strains. The distribution serves as a critical tool for identifying biofilm phenotypes, particularly where poly-N-acetylglucosamine (PNAG), a key constituent of extracellular polymeric substances (EPS) in <em>S. epidermidis</em>, represents the dominant mass fraction in the samples analyzed by our infrared (IR) scanning systems. In addition to faster processing times, our novel MIR system demonstrated significantly higher sensitivity compared to FTIR, enabling clear differentiation between the chemical signatures of biofilm and planktonic strains. The corresponding novel approach integrates advanced data analytics with a newly designed rapid MIR prototype, enabling optimized and swift detection of biofilm signatures. These signatures, now recognized as critical targets in diagnosing complex infections, provide an alternative to traditional microbial detection methods in clinical diagnostics.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100270"},"PeriodicalIF":5.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143577743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-03-04DOI: 10.1016/j.bioflm.2025.100269
Yu-Tze Horng , Chih-Ching Chien , Novaria Sari Dewi Panjaitan , Shih-Wen Tseng , Hsueh-Wen Chen , Hung-Chi Yang , Yih-Yuan Chen , Po-Chi Soo
{"title":"Sucrose reduces biofilm formation by Klebsiella pneumoniae through the PTS components ScrA and Crr","authors":"Yu-Tze Horng , Chih-Ching Chien , Novaria Sari Dewi Panjaitan , Shih-Wen Tseng , Hsueh-Wen Chen , Hung-Chi Yang , Yih-Yuan Chen , Po-Chi Soo","doi":"10.1016/j.bioflm.2025.100269","DOIUrl":"10.1016/j.bioflm.2025.100269","url":null,"abstract":"<div><div>The presence of sucrose at concentrations of 0.5–5% can either increase bacterial biofilms (<em>Streptococcus mutans</em> and <em>Escherichia coli</em>) or have no significant effect on biofilms (<em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em>). However, our study revealed that 1 % sucrose reduced the biofilm formation by <em>Klebsiella pneumoniae</em> STU1. To explore the role of the phosphoenolpyruvate-dependent-carbohydrate: phosphotransferase system (PTS) in regulating this process, the <em>scrA</em> gene, which encodes the sucrose-specific EIIBC of the PTS, was deleted in <em>K. pneumoniae</em> to create a <em>scrA</em> mutant (Δ<em>scrA</em>). Thereafter, we observed that the biofilm formation and type 3 fimbriae production were not affected by sucrose in the Δ<em>scrA</em> while sucrose reduced these processes in the wild type. Furthermore, we discovered that Crr, the glucose-specific EIIA of PTS, was the primary but not the sole EIIA of ScrA in <em>K. pneumoniae</em> by sucrose fermentation test. In addition, deficiency of Crr reduced the biofilm formation in <em>K. pneumoniae</em>. Our proposed model suggests that, through the action of Crr in the absence of sucrose, the transcription of the <em>mrk</em> operon, which produces type 3 fimbriae, was increased, thereby influencing biofilm formation by <em>K. pneumoniae</em> and bacterial number in the gut of nematode. This observation differs from the regulation of polysaccharide and biofilm by sucrose in other bacteria. Our findings extend the understanding of the effects of sucrose on biofilm formation.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100269"},"PeriodicalIF":5.9,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-02-28DOI: 10.1016/j.bioflm.2025.100268
Sandy Gerschler , Sandra Maaß , Philip Gerth , Lukas Schulig , Toni Wildgrube , Jan Rockstroh , Martina Wurster , Karen Methling , Dörte Becher , Michael Lalk , Christian Schulze , Sebastian Guenther , Nadin Schultze
{"title":"Drosera rotundifolia L. as E. coli biofilm inhibitor: Insights into the mechanism of action using proteomics/metabolomics and toxicity studies","authors":"Sandy Gerschler , Sandra Maaß , Philip Gerth , Lukas Schulig , Toni Wildgrube , Jan Rockstroh , Martina Wurster , Karen Methling , Dörte Becher , Michael Lalk , Christian Schulze , Sebastian Guenther , Nadin Schultze","doi":"10.1016/j.bioflm.2025.100268","DOIUrl":"10.1016/j.bioflm.2025.100268","url":null,"abstract":"<div><div>The successful sustainable cultivation of the well-known medicinal plant sundew on rewetted peatlands not only leads to the preservation of natural populations, but also provides a basis for the sustainable pharmaceutical use of the plant. The bioactive compounds of sundew, flavonoids and naphthoquinones, show biofilm-inhibiting properties against multidrug-resistant, ESBL-producing <em>E. coli</em> strains and open up new therapeutic possibilities.</div><div>This study investigates the molecular mechanisms of these compounds in biofilm inhibition through proteomic analyses. Specific fractions of flavonoids and naphthoquinones, as well as individual substances like 7-methyljuglone and 2″-<em>O</em>-galloylhyperoside, are analyzed. Results show that naphthoquinones appear to act via central regulatory proteins such as OmpR and alter the stress response while flavonoids likely affect biofilm formation by creating an iron-poor environment through iron complexation and additionally influence polyamine balance, reducing intracellular spermidine levels. Further investigations including assays for iron complexation and analysis of polyamines confirmed the proteomic data. Safety evaluations through cytotoxicity tests in 3D cell cultures and the <em>Galleria mellonella in vivo</em> model confirm the safety of the extracts used. These findings highlight sundew as a promising candidate for new phytopharmaceuticals.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100268"},"PeriodicalIF":5.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmPub Date : 2025-02-27DOI: 10.1016/j.bioflm.2025.100266
Heema Kumari Nilesh Vyas , M. Mozammel Hoque , Binbin Xia , David Alam , Patrick J. Cullen , Scott A. Rice , Anne Mai-Prochnow
{"title":"Transcriptional signatures associated with the survival of Escherichia coli biofilm during treatment with plasma-activated water","authors":"Heema Kumari Nilesh Vyas , M. Mozammel Hoque , Binbin Xia , David Alam , Patrick J. Cullen , Scott A. Rice , Anne Mai-Prochnow","doi":"10.1016/j.bioflm.2025.100266","DOIUrl":"10.1016/j.bioflm.2025.100266","url":null,"abstract":"<div><div>Biofilm formation on surfaces, tools and equipment can damage their quality and lead to high repair or replacement costs. Plasma-activated water (PAW), a new technology, has shown promise in killing biofilm and non-biofilm bacteria due to reactive oxygen and nitrogen species (RONS), particularly superoxide. However, the exact genetic mechanisms behind PAW’s effectiveness against biofilms remain unclear. Here, we examined the stress responses of <em>Escherichia coli</em> biofilms exposed to sub-lethal PAW treatment using bulk RNA sequencing and transcriptomics. We compared gene expression in PAW-treated <em>E. coli</em> biofilms with and without superoxide removal, achieved by adding the scavenger Tiron. Biofilms treated with PAW exhibited a 40 % variation in gene expression compared to those treated with PAW-Tiron and controls. Specifically, PAW treatment resulted in 478 upregulated genes (>1.5 log<sub>2</sub>FC) and 186 downregulated genes (<−1.5 log<sub>2</sub>FC) compared to the control. Pathway and biological process enrichment analysis revealed significant upregulation of genes involved in sulfur metabolism, ATP-binding transporter, amino acid metabolism, hypochlorite response systems and oxidative phosphorylation in PAW-treated biofilms compared to control. Biofilm viability and intracellular RONS accumulation were tested for <em>E. coli</em> mutants lacking key genes from these pathways. Knockout mutants of thioredoxin (<em>trxC</em>), thiosulfate-binding proteins (<em>cysP</em>), and NADH dehydrogenase subunit (<em>nuoM</em>) showed significantly reduced biofilm viability after PAW treatment. Notably, <em>ΔtrxC</em> biofilms had the highest intracellular ROS accumulation, as revealed by 2′,7′–dichlorofluorescin diacetate staining after PAW treatment. This confirms the importance of these genes in managing oxidative stress caused by PAW and highlights the significance of superoxide in PAW's bactericidal effects. Overall, our findings shed light on the specific genes and pathways that help <em>E. coli</em> biofilms survive and respond to PAW treatment, offering a new understanding of plasma technology and its anti-biofilm mechanisms.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100266"},"PeriodicalIF":5.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}