Annual Review of Marine Science最新文献

筛选
英文 中文
Lessons Learned from the Sea Star Wasting Disease Investigation. 从海星枯萎病调查中汲取的经验教训。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-040623-082617
Ian Hewson, Mitchell R Johnson, Brandon Reyes-Chavez
{"title":"Lessons Learned from the Sea Star Wasting Disease Investigation.","authors":"Ian Hewson, Mitchell R Johnson, Brandon Reyes-Chavez","doi":"10.1146/annurev-marine-040623-082617","DOIUrl":"10.1146/annurev-marine-040623-082617","url":null,"abstract":"<p><p>Marine invertebrate mass mortality events (MMEs) threaten biodiversity and have the potential to catastrophically alter ecosystem structure. A proximal question around acute MMEs is their etiologies and/or environmental drivers. Establishing a robust cause of mortality is challenging in marine habitats due to the complexity of the interactions among species and the free dispersal of microorganisms from surrounding waters to metazoan microbiomes. The 2013-2014 sea star wasting disease (SSWD) MME in the northeast Pacific Ocean highlights the difficulty in establishing responsible agents. In less than a year of scientific investigation, investigators identified a candidate agent and provided at the time convincing data of pathogenic and transmissible disease. However, later investigation failed to support the initial results, and critical retrospective analyses of experimental procedures and reinterpretation of early findings disbanded any candidate agent. Despite the circuitous path that the investigation and understanding of SSWD have taken, lessons learned from the initial investigation-improving on approaches that led to misinterpretation-have been successfully applied to the 2022 <i>Diadema antillarum</i> investigation. In this review, we outline the history of the initial SSWD investigation, examine how early exploration led to spurious interpretations, summarize the lessons learned, provide recommendations for future work in other systems, and examine potential links between the SSWD event and the <i>Diadema antillarum</i> MME.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"257-279"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Desiccation and Catastrophic Refilling of the Mediterranean: 50 Years of Facts, Hypotheses, and Myths Around the Messinian Salinity Crisis. 地中海的干涸和灾难性回填:围绕梅西尼亚盐度危机的50年事实、假说和神话》(The Desiccation and Catastrophic Refilling of the Mediterranean: 50 Years of Facts, Hypotheses, and Myths Around the Messinian Salinity Crisis)。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-021723-110155
Marco Roveri, Stefano Lugli, Vinicio Manzi
{"title":"The Desiccation and Catastrophic Refilling of the Mediterranean: 50 Years of Facts, Hypotheses, and Myths Around the Messinian Salinity Crisis.","authors":"Marco Roveri, Stefano Lugli, Vinicio Manzi","doi":"10.1146/annurev-marine-021723-110155","DOIUrl":"10.1146/annurev-marine-021723-110155","url":null,"abstract":"<p><p>According to some authors, the Messinian salinity crisis was ended by a giant waterfall or megaflood 5.33 million years ago, when the Atlantic Ocean reconnected in a catastrophic way with the desiccated Mediterranean, creating the Strait of Gibraltar. An erosional surface deeply cutting upper Miocene or older rocks and sealed by lower Pliocene sediments is the geological feature that inspired this fascinating hypothesis. The hypothesis, which recalls several ancient myths, is well established in the scientific community and often considered to be a fact. However, several studies are suggesting that the Atlantic-Mediterranean connection through the Strait of Gibraltar was probably active before and during the entire Messinian salinity crisis. This allows us to consider the possibility that long-lived, more gradual physical processes were responsible for the evolution of the strait, opening the idea of a nondesiccated Mediterranean Sea.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"485-509"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Technologies for Monitoring Coastal Ecosystem Dynamics. 监测沿海生态系统动态的新技术。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-040523-020221
Kyle C Cavanaugh, Tom W Bell, Karen E Aerni, Jarrett E K Byrnes, Seth McCammon, Madison M Smith
{"title":"New Technologies for Monitoring Coastal Ecosystem Dynamics.","authors":"Kyle C Cavanaugh, Tom W Bell, Karen E Aerni, Jarrett E K Byrnes, Seth McCammon, Madison M Smith","doi":"10.1146/annurev-marine-040523-020221","DOIUrl":"10.1146/annurev-marine-040523-020221","url":null,"abstract":"<p><p>In recent years, our view of coastal ecosystems has expanded and come into greater focus. We are currently making more types of observations over larger areas and at higher frequencies than ever before. These advances are timely, as coastal ecosystems are facing increasing pressures from climate change and anthropogenic stressors. This article synthesizes recent literature on emerging technologies for coastal ecosystem monitoring, including satellite monitoring, aerial and underwater drones, in situ sensor networks, fiber optic systems, and community science observatories. We also describe how advances in artificial intelligence and deep learning underpin all these technologies by enabling insights to be drawn from increasingly large data volumes. Even with these recent advances, there are still major gaps in coastal ecosystem monitoring that must be addressed to manage coastal ecosystems during a period of accelerating global change.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"409-433"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Environmental and Climatic Changes on Coral Reef Islands. 环境和气候变化对珊瑚礁岛屿的影响。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-032223-030921
Paul S Kench
{"title":"Effects of Environmental and Climatic Changes on Coral Reef Islands.","authors":"Paul S Kench","doi":"10.1146/annurev-marine-032223-030921","DOIUrl":"10.1146/annurev-marine-032223-030921","url":null,"abstract":"<p><p>Coral reef islands are low-lying, wave-deposited sedimentary landforms. Using an eco-morphodynamic framework, this review examines the sensitivity of islands to climatic and environmental change. Reef island formation and morphological dynamics are directly controlled by nearshore wave processes and ecologically mediated sediment supply. The review highlights that reef islands are intrinsically dynamic landforms, able to adjust their morphology (size, shape, and location) on reef surfaces in response to changes in these processes. A suite of ecological and oceanographic processes also indirectly impact hydrodynamic and sediment processes and thereby regulate morphological change, though the temporal scales and magnitudes of impacts on islands vary, leading to divergent morphodynamic outcomes. Climatic change will modify the direct and indirect processes, causing complex positive and negative outcomes on islands. Understanding this complexity is critical to improve predictive capabilities for island physical change and resolve the timescales of change and lag times for impacts to be expressed in island systems.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"301-324"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction. 介绍。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 DOI: 10.1146/annurev-ma-17-091924-100001
{"title":"Introduction.","authors":"","doi":"10.1146/annurev-ma-17-091924-100001","DOIUrl":"https://doi.org/10.1146/annurev-ma-17-091924-100001","url":null,"abstract":"","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"17 1","pages":"i"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Land Bridges and Rafting Theories to Explain Terrestrial-Vertebrate Biodiversity on Madagascar. 解释马达加斯加陆生脊椎动物生物多样性的陆桥和漂流理论。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-032223-025654
Jason R Ali, S Blair Hedges
{"title":"Land Bridges and Rafting Theories to Explain Terrestrial-Vertebrate Biodiversity on Madagascar.","authors":"Jason R Ali, S Blair Hedges","doi":"10.1146/annurev-marine-032223-025654","DOIUrl":"10.1146/annurev-marine-032223-025654","url":null,"abstract":"<p><p>Madagascar's celebrated land-vertebrate assemblage has long been studied and discussed. How the ancestors of the 30 different lineages arrived on the island, which has existed since 85 Mya and is separated from neighboring Africa by 430 km of water, is a deeply important question. Did the colonizations take place when the landmass formed part of Gondwana, or did they occur later and involve either now-drowned causeways or overwater dispersal (on vegetation rafts or by floating/swimming)? Following a historical review, we appraise the geological-geophysical evidence and the faunal-suite colonization record. Twenty-six of the clades are explained by temporally stochastic overwater dispersals, spanning 69-0 Mya, while two others are considered Gondwanan vicariant relicts. Due to a lack of information, the remaining two groups cannot be evaluated. The findings thus appear to resolve a debate that has rumbled along, with sporadic eruptions, since the mid-1800s.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"281-299"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics of the Seasonal Sea Ice Zone. 季节性海冰区物理学。
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-121422-015323
Lettie A Roach, Madison M Smith, Agnieszka Herman, Damien Ringeisen
{"title":"Physics of the Seasonal Sea Ice Zone.","authors":"Lettie A Roach, Madison M Smith, Agnieszka Herman, Damien Ringeisen","doi":"10.1146/annurev-marine-121422-015323","DOIUrl":"10.1146/annurev-marine-121422-015323","url":null,"abstract":"<p><p>The seasonal sea ice zone encompasses the region between the winter maximum and summer minimum sea ice extent. In both the Arctic and Antarctic, the majority of the ice cover can now be classified as seasonal. Here, we review the sea ice physics that governs the evolution of seasonal sea ice in the Arctic and Antarctic, spanning sea ice growth, melt, and dynamics and including interactions with ocean surface waves as well as other coupled processes. The advent of coupled wave-ice modeling and discrete-element modeling, together with improved and expanded satellite observations and field campaigns, has yielded advances in process understanding. Many topics remain in need of further investigation, including rheologies appropriate for seasonal sea ice, wave-induced sea ice fracture, welding for sea ice freeze-up, and the distribution of snow on seasonal sea ice. Future research should aim to redress biases (such as disparities in focus between the Arctic and Antarctic and between summer and winter processes) and connect observations to modeling across spatial scales.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"355-379"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Serendipity of Discovery: Life of a Geochemist. 发现的偶然性:地球化学家的生活
IF 14.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1146/annurev-marine-050823-103645
Willard S Moore
{"title":"The Serendipity of Discovery: Life of a Geochemist.","authors":"Willard S Moore","doi":"10.1146/annurev-marine-050823-103645","DOIUrl":"10.1146/annurev-marine-050823-103645","url":null,"abstract":"<p><p>My strategy for writing this autobiography is to use examples of how working on seemingly different projects can often lead to outcomes more important than originally envisioned. Serendipity is a happy accident-specifically, the accident of discovering something useful without directly looking for it. This often occurs when two research projects converge unexpectedly. The main text contains examples of how serendipity has led me to important discoveries, including (<i>a</i>) finding surprisingly high 228Ra activities in the ocean; (<i>b</i>) developing a means of rapidly and quantitatively extracting radium from seawater; (<i>c</i>) devising a rapid, sensitive method of measuring 224Ra and 223Ra; (<i>d</i>) realizing the scale and biogeochemical importance of submarine groundwater discharge; and (<i>e</i>) conceiving a method to estimate the total flux of submarine groundwater discharge to the Atlantic Ocean. The <b>Supplemental Material</b> fleshes out details of these discoveries and places them in the context of my other investigations.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"1-22"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights Gained from Including People in Our Models of Nature and Modes of Science 将人类纳入我们的自然模式和科学模式所获得的启示
IF 17.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2024-09-17 DOI: 10.1146/annurev-marine-021523-105524
Anne K. Salomon, Iain McKechnie
{"title":"Insights Gained from Including People in Our Models of Nature and Modes of Science","authors":"Anne K. Salomon, Iain McKechnie","doi":"10.1146/annurev-marine-021523-105524","DOIUrl":"https://doi.org/10.1146/annurev-marine-021523-105524","url":null,"abstract":"Across the natural sciences, humans are typically conceptualized as external disruptors of nature rather than adaptable components of it. Historical evidence, however, challenges this dominant schema. Here, we describe the broad repertoire of ecological functions performed by people in place-based societies across the Pacific Ocean over millennia, illustrating their roles as ecosystem engineers, dispersers, bioturbators, nutrient cyclers, predators, and herbivores. By considering the reciprocal relationships between people and the ecosystems within which they are embedded, evidence of humanity's ability to experiment, learn, adapt, innovate, and sustain diverse and resilient social–ecological relationships emerges. Therefore, recognizing people as inseparable components of marine ecosystems and their millennia of engagement with coastal ocean spaces is critical to both understanding marine ecosystems and devising resilient and equitable ocean policies.","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"64 1","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Big Is Big? The Effective Population Size of Marine Bacteria 有多大?海洋细菌的有效种群规模
IF 17.3 1区 地球科学
Annual Review of Marine Science Pub Date : 2024-09-17 DOI: 10.1146/annurev-marine-050823-104415
Haiwei Luo
{"title":"How Big Is Big? The Effective Population Size of Marine Bacteria","authors":"Haiwei Luo","doi":"10.1146/annurev-marine-050823-104415","DOIUrl":"https://doi.org/10.1146/annurev-marine-050823-104415","url":null,"abstract":"Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (Nc) have been unfoundedly translated to huge effective population sizes (Ne)—the size of an ideal population carrying as much neutral genetic diversity as the actual population. As Ne scales inversely with the strength of genetic drift, constraining the magnitude of Ne is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the Ne of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising—their Ne values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient Ne values by other methods.","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"32 1","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信