The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean.

IF 14.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Marina Lévy, Damien Couespel, Clément Haëck, M G Keerthi, Inès Mangolte, Channing J Prend
{"title":"The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean.","authors":"Marina Lévy, Damien Couespel, Clément Haëck, M G Keerthi, Inès Mangolte, Channing J Prend","doi":"10.1146/annurev-marine-020723-020531","DOIUrl":null,"url":null,"abstract":"<p><p>Fine-scale currents, <i>O</i>(1-100 km, days-months), are actively involved in the transport and transformation of biogeochemical tracers in the ocean. However, their overall impact on large-scale biogeochemical cycling on the timescale of years remains poorly understood due to the multiscale nature of the problem. Here, we summarize these impacts and critically review current estimates. We examine how eddy fluxes and upscale connections enter into the large-scale balance of biogeochemical tracers. We show that the overall contribution of eddy fluxes to primary production and carbon export may not be as large as it is for oxygen ventilation. We highlight the importance of fine scales to low-frequency natural variability through upscale connections and show that they may also buffer the negative effects of climate change on the functioning of biogeochemical cycles. Significant interdisciplinary efforts are needed to properly account for the cross-scale effects of fine scales on biogeochemical cycles in climate projections.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-020723-020531","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-scale currents, O(1-100 km, days-months), are actively involved in the transport and transformation of biogeochemical tracers in the ocean. However, their overall impact on large-scale biogeochemical cycling on the timescale of years remains poorly understood due to the multiscale nature of the problem. Here, we summarize these impacts and critically review current estimates. We examine how eddy fluxes and upscale connections enter into the large-scale balance of biogeochemical tracers. We show that the overall contribution of eddy fluxes to primary production and carbon export may not be as large as it is for oxygen ventilation. We highlight the importance of fine scales to low-frequency natural variability through upscale connections and show that they may also buffer the negative effects of climate change on the functioning of biogeochemical cycles. Significant interdisciplinary efforts are needed to properly account for the cross-scale effects of fine scales on biogeochemical cycles in climate projections.

细尺度洋流对不断变化的海洋中生物地球化学循环的影响》(The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean.
细尺度洋流(1-100 公里,日-月)积极参与海洋生物地球化学示踪剂的传输和转化。然而,由于这一问题的多尺度性质,人们对它们在数年时间尺度上对大尺度生物地球化学循环的总体影响仍然知之甚少。在此,我们总结了这些影响,并对目前的估计进行了严格审查。我们研究了漩涡通量和上尺度连接如何进入生物地球化学示踪剂的大尺度平衡。我们表明,漩涡通量对初级生产和碳输出的总体贡献可能没有氧气通量那么大。我们强调了细尺度通过上尺度联系对低频自然变率的重要性,并表明它们也可能缓冲气候变化对生物地球化学循环功能的负面影响。要在气候预测中正确考虑精细尺度对生物地球化学循环的跨尺度影响,还需要开展大量的跨学科工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Marine Science
Annual Review of Marine Science 地学-地球化学与地球物理
CiteScore
33.60
自引率
0.60%
发文量
40
期刊介绍: The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信