Emily F Eidam, Nina Stark, Jaap H Nienhuis, Molly Keogh, Jeff Obelcz
{"title":"Arctic Continental-Shelf Sediment Dynamics.","authors":"Emily F Eidam, Nina Stark, Jaap H Nienhuis, Molly Keogh, Jeff Obelcz","doi":"10.1146/annurev-marine-040423-023827","DOIUrl":"https://doi.org/10.1146/annurev-marine-040423-023827","url":null,"abstract":"<p><p>Sediments covering Arctic continental shelves are uniquely impacted by ice processes. Delivery of sediments is generally limited to the summer, when rivers are ice free, permafrost bluffs are thawing, and sea ice is undergoing its seasonal retreat. Once delivered to the coastal zone, sediments follow complex pathways to their final depocenters-for example, fluvial sediments may experience enhanced seaward advection in the spring due to routing under nearshore sea ice; during the open-water season, boundary-layer transport may be altered by strong stratification in the ocean due to ice melt; during the fall storm season, sediments may be entrained into sea ice through the production of anchor ice and frazil; and in the winter, large ice keels more than 20 m tall plow the seafloor (sometimes to seabed depths of 1-2 m), creating a type of physical mixing that dwarfs the decimeter-scale mixing from bioturbation observed in lower-latitude shelf systems. This review summarizes the work done on subtidal sediment dynamics over the last 50 years in Arctic shelf systems backed by soft-sediment coastlines and suggests directions for future sediment studies in a changing Arctic. Reduced sea ice, increased wave energy, and increased sediment supply from bluffs (and possibly rivers) will likely alter marine sediment dynamics in the Arctic now and into the future.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle C Cavanaugh, Tom W Bell, Karen E Aerni, Jarrett E K Byrnes, Seth McCammon, Madison M Smith
{"title":"New Technologies for Monitoring Coastal Ecosystem Dynamics.","authors":"Kyle C Cavanaugh, Tom W Bell, Karen E Aerni, Jarrett E K Byrnes, Seth McCammon, Madison M Smith","doi":"10.1146/annurev-marine-040523-020221","DOIUrl":"10.1146/annurev-marine-040523-020221","url":null,"abstract":"<p><p>In recent years, our view of coastal ecosystems has expanded and come into greater focus. We are currently making more types of observations over larger areas and at higher frequencies than ever before. These advances are timely, as coastal ecosystems are facing increasing pressures from climate change and anthropogenic stressors. This article synthesizes recent literature on emerging technologies for coastal ecosystem monitoring, including satellite monitoring, aerial and underwater drones, in situ sensor networks, fiber optic systems, and community science observatories. We also describe how advances in artificial intelligence and deep learning underpin all these technologies by enabling insights to be drawn from increasingly large data volumes. Even with these recent advances, there are still major gaps in coastal ecosystem monitoring that must be addressed to manage coastal ecosystems during a period of accelerating global change.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oyster Restoration to Recover Ecosystem Services.","authors":"Rachel S Smith, Jessica L Pruett","doi":"10.1146/annurev-marine-040423-023007","DOIUrl":"https://doi.org/10.1146/annurev-marine-040423-023007","url":null,"abstract":"<p><p>Oyster reef loss represents one of the most dramatic declines of a foundation species worldwide. Oysters provide valuable ecosystem services (ES), including habitat provisioning, water filtration, and shoreline protection. Since the 1990s, a global community of science and practice has organized around oyster restoration with the goal of restoring these valuable services. We highlight ES-based approaches throughout the restoration process, consider applications of emerging technologies, and review knowledge gaps about the life histories and ES provisioning of underrepresented species. Climate change will increasingly affect oyster populations, and we assess how restoration practices can adapt to these changes. Considering ES throughout the restoration process supports adaptive management. For a rapidly growing restoration practice, we highlight the importance of early community engagement, long-term monitoring, and adapting actions to local conditions to achieve desired outcomes.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Environmental and Climatic Changes on Coral Reef Islands.","authors":"Paul S Kench","doi":"10.1146/annurev-marine-032223-030921","DOIUrl":"https://doi.org/10.1146/annurev-marine-032223-030921","url":null,"abstract":"<p><p>Coral reef islands are low-lying, wave-deposited sedimentary landforms. Using an eco-morphodynamic framework, this review examines the sensitivity of islands to climatic and environmental change. Reef island formation and morphological dynamics are directly controlled by nearshore wave processes and ecologically mediated sediment supply. The review highlights that reef islands are intrinsically dynamic landforms, able to adjust their morphology (size, shape, and location) on reef surfaces in response to changes in these processes. A suite of ecological and oceanographic processes also indirectly impact hydrodynamic and sediment processes and thereby regulate morphological change, though the temporal scales and magnitudes of impacts on islands vary, leading to divergent morphodynamic outcomes. Climatic change will modify the direct and indirect processes, causing complex positive and negative outcomes on islands. Understanding this complexity is critical to improve predictive capabilities for island physical change and resolve the timescales of change and lag times for impacts to be expressed in island systems.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The State of Marine Social Science: Yesterday, Today, and into the Future.","authors":"Ana K Spalding, Emma McKinley","doi":"10.1146/annurev-marine-121422-015345","DOIUrl":"https://doi.org/10.1146/annurev-marine-121422-015345","url":null,"abstract":"<p><p>Rapidly changing ocean conditions are resulting in changes in marine species and across entire ecosystems that, in turn, affect communities and individuals who rely on these resources for their livelihoods, culture, and sustenance. Marine social science, an emerging field that embraces diverse methods to understand human-ocean relationships, is increasingly called on to contribute to transdisciplinary ocean science that can inform the evidence-based policy and management needed to address these changes. Here, we review the state of marine social science as a growing field of study. First, we outline the history of marine social science, including the emergence of the field and the social science disciplines and community it encompasses. We then discuss current marine social science research themes as a framework to understand key ocean issues, which is followed by a commentary on the future of marine social science research.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thibaut Caley, Antoine Souron, Kevin T Uno, Gabriele A Macho
{"title":"Climate and Human Evolution: Insights from Marine Records.","authors":"Thibaut Caley, Antoine Souron, Kevin T Uno, Gabriele A Macho","doi":"10.1146/annurev-marine-032223-031306","DOIUrl":"https://doi.org/10.1146/annurev-marine-032223-031306","url":null,"abstract":"<p><p>The relationship between climate and human evolution is complex, and the causal mechanisms remain unknown. Here, we review and synthesize what is currently known about climate forcings on African landscapes, focusing mainly on the last 4 million years. We use information derived from marine sediment archives and data-numerical climate model comparisons and integration. There exists a heterogeneity in pan-African hydroclimate changes, forced by a combination of orbitally paced, low-latitude fluctuations in insolation; polar ice volume changes; tropical sea surface temperature gradients; the Walker circulation; and possibly greenhouse gases. Pan-African vegetation changes do not follow the same pattern, which is suggestive of additional influences, such as CO<sub>2</sub> and temperature. We caution against reliance on temporal correlations between global or regional climate, environmental changes, and human evolution and briefly proffer some ideas on how pan-African climate trends could help create novel conceptual frameworks to determine the causal mechanisms of associations between climate/habitat change and hominin evolution.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna J Waniek, Helena Osterholz, Helena C Frazão
{"title":"A Global Inventory of Natural and Synthetic Estrogens in Aquatic Systems.","authors":"Joanna J Waniek, Helena Osterholz, Helena C Frazão","doi":"10.1146/annurev-marine-032123-025855","DOIUrl":"https://doi.org/10.1146/annurev-marine-032123-025855","url":null,"abstract":"<p><p>Estrogens are a group of endocrine disruptors that are recognized as a threat to the world's ecosystems and are easily transported through aquatic systems from mainly anthropogenic sources. To illustrate this growing problem, we have compiled a global overview of measured concentrations of natural and synthetic estrogens restricted to freshwater systems (lakes, rivers, and lagoons) and marine coastal and open ocean environments, focusing on estrone (E1), 17$upbeta$-estradiol (E2), estriol (E3), and 17$upalpha$-ethinylestradiol (EE2). We found that the cumulative risk quotient is high at 65% of 400 sampled sites, highlighting that estrogen pollution is a major environmental concern. Our investigation revealed that almost no information is available on the concentration levels of E1, E2, E3, and EE2 for the open ocean areas. However, their occurrence in all systems, including open seas, suggests that estrogens are not completely degraded during transport to and within the environment and may be more persistent than previously thought.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scott C Doney, Wiley H Wolfe, Darren C McKee, Jay G Fuhrman
{"title":"The Science, Engineering, and Validation of Marine Carbon Dioxide Removal and Storage.","authors":"Scott C Doney, Wiley H Wolfe, Darren C McKee, Jay G Fuhrman","doi":"10.1146/annurev-marine-040523-014702","DOIUrl":"https://doi.org/10.1146/annurev-marine-040523-014702","url":null,"abstract":"<p><p>Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO<sub>2</sub>) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods-measurement, monitoring, reporting, and verification-that are essential to demonstrate the safe removal and long-term storage of CO<sub>2</sub>. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Viruses Shape Microbial Plankton Microdiversity.","authors":"Francisco Rodriguez-Valera, Christopher Bellas","doi":"10.1146/annurev-marine-040623-090847","DOIUrl":"https://doi.org/10.1146/annurev-marine-040623-090847","url":null,"abstract":"<p><p>One major conundrum of modern microbiology is the large pangenome (gene pool) present in microbes, which is much larger than those found in complex organisms such as humans. Here, we argue that this diversity of gene pools carried by different strains is maintained largely due to the control exercised by viral predation. Viruses maintain a high strain diversity through time that we describe as constant-diversity equilibrium, preventing the hoarding of resources by specific clones. Thus, viruses facilitate the release and degradation of dissolved organic matter in the ocean, which may lead to better ecosystem functioning by linking top-down to bottom-up control. By maintaining this equilibrium, viruses act as a key element of the adaptation of marine microbes to their environment and likely evolve as a single evolutionary unit.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond Meta-Omics: Functional Genomics in Future Marine Microbiome Research.","authors":"Yin Chen","doi":"10.1146/annurev-marine-020123-100931","DOIUrl":"https://doi.org/10.1146/annurev-marine-020123-100931","url":null,"abstract":"<p><p>When President Bill Clinton and Francis Collins, then the director of the National Human Genome Research Institute, celebrated the near completion of the human genome sequence at the White House in the summer of 2000, it is unlikely that they or anyone else could have predicted the blossoming of meta-omics in the following two decades and their applications in modern human microbiome and environmental microbiome research. This transformation was enabled by the development of high-throughput sequencing technologies and sophisticated computational biology tools and bioinformatics software packages. Today, environmental meta-omics has undoubtedly revolutionized our understanding of ocean ecosystems, providing the genetic blueprint of oceanic microscopic organisms. In this review, I discuss the importance of functional genomics in future marine microbiome research and advocate a position for a gene-centric, bottom-up approach in modern oceanography. I propose that a synthesis of multidimensional approaches is required for a better understanding of the true functionality of the marine microbiome.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}