Rachel Eshima McKay , Michael Kohn , Elliot Schwartz , Merlin D. Larson
{"title":"Population study of pupillary unrest in ambient light","authors":"Rachel Eshima McKay , Michael Kohn , Elliot Schwartz , Merlin D. Larson","doi":"10.1016/j.autneu.2024.103197","DOIUrl":"https://doi.org/10.1016/j.autneu.2024.103197","url":null,"abstract":"<div><h3>Introduction</h3><p>Pupillary unrest in ambient light (PUAL) describes the fluctuation of pupil diameter observed in normal, awake subjects under typical levels of indoor light. PUAL becomes low to absent in young healthy subjects during opioid intoxication. We sought to determine the age-related distribution of PUAL values in a random sample of ambulatory participants.</p></div><div><h3>Methods</h3><p>Subjects ≥18 years of age were recruited. All were identified by age range (18–29, 30–49, 50–69, and ≥70), and surveyed for diabetes, beta-blocker use, and prior 24-hour opioid use. Relationship between mean PUAL, age group, comorbidity and opioid use were examined by Kruskal Wallis test, and PUAL and was modeled using stepwise multilevel linear regression, including diabetes, beta blocker use, prior 24-hour opioid use, autonomic dysfunction, and pupil diameter as fixed effects and subject as random effect.</p></div><div><h3>Results</h3><p>Among 150 subjects, 17 reported diabetes, 12 reported beta-blocker use, 14 reported prior 24-hour opioid use, and 120 reported no comorbid conditions. PUAL declined in higher age categories (by 0.0307, <em>P</em> < 0.001), with diabetes (by 0.0481, <em>P</em> = 0.025), and with beta-blocker use (by 0.0616, <em>P</em> = 0.005). Opioid related PUAL decline was observed, but statistical significance varied by model. Among healthy subjects, no PUAL value fell within range indicating high likelihood of opioid toxicity based on previous data from healthy subjects undergoing opioid infusion.</p></div><div><h3>Conclusion</h3><p>PUAL declined in higher age groups, diabetes and beta-blocker use, conditions associated with impaired autonomic function, and with opioid use but significance varied depending on the chosen model.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103197"},"PeriodicalIF":3.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566070224000511/pdfft?md5=59ed5f8613d692469bbdd9d1a3216457&pid=1-s2.0-S1566070224000511-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increased adrenocortical activity in patients with vasovagal syncope","authors":"Barbora Bačkorová , Zora Lazúrová , Paulina Lewaskiewicz , Peter Mitro , Ivica Lazúrová","doi":"10.1016/j.autneu.2024.103196","DOIUrl":"10.1016/j.autneu.2024.103196","url":null,"abstract":"<div><h3>Objective</h3><p>Syncope is a transient loss of consciousness resulting from cerebral hypoperfusion. Vasovagal syncope (VVS) is a form of orthostatic intolerance (OI). Its clinical signs such as dizziness and hypotension may mimic symptoms of adrenal insufficiency. The objective of this study was to evaluate the adrenal gland function in patients with vasovagal syncope after stimulation with synthetic adrenocorticotropic hormone (ACTH).</p></div><div><h3>Design</h3><p>Case-control study on patients with VVS and healthy controls.</p></div><div><h3>Methods</h3><p>The study involved 42 participants, including 27 patients diagnosed with VVS using the head-up tilt test and 15 healthy individuals with no history of syncope or any orthostatic symptoms. Serum cortisol and aldosterone concentrations were measured under basal conditions and at 30 and 60 min after intramuscular ACTH stimulation.</p></div><div><h3>Results</h3><p>Patients with VVS had significantly higher cortisol levels at baseline (441 ± 143 vs. 331 ± 84.7 nmol/L, <em>p</em> = 0.01), at 30 min (802 ± 143 vs. 686 ± 105 nmol/L, p = 0.01) and at 60 min (931 ± 141 nmol/L vs. 793 ± 147 nmol/L, <em>p</em> = 0.001) after ACTH administration (Synacthen 250 μg). Plasma aldosterone increased after ACTH stimulation, but did not show significant differences among groups. Furthermore, there was also no significant correlation between cortisol levels and blood pressure or heart rate.</p></div><div><h3>Conclusion</h3><p>Patients diagnosed with VVS have higher cortisol levels both at baseline and after ACTH stimulation. This finding indicates that individuals with VVS have higher adrenocortical activity potentially as a response to the orthostatic stress induced by syncope, which acts as a stressful stimulus on the autonomic nervous system.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103196"},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduction of long COVID symptoms after stellate ganglion block: A retrospective chart review study","authors":"Deborah Duricka , Luke Liu","doi":"10.1016/j.autneu.2024.103195","DOIUrl":"10.1016/j.autneu.2024.103195","url":null,"abstract":"<div><p>The SARS-CoV-2 pandemic has left millions of individuals with a host of post-viral symptoms that can be debilitating and persist indefinitely. To date there are no definitive tests or treatments for the collection of symptoms known as “Long COVID” or Post-acute sequelae of COVID-19 (PASC). Following our initial case report detailing improvement of Long COVID symptoms after sequential bilateral stellate ganglion blockade (SGB), we performed a retrospective chart analysis study on individuals treated with the same protocol over the course of six months (2021−2022) in our clinic. Patients self-reported symptoms on a 10-point scale as part of optional patient follow-up using an online survey. After one month or more following treatment, patients reported striking reductions in Fatigue, Worsening of Symptoms following Mental and Physical Activity, Memory Problems, Problems Concentrating, Sleep Problems, Anxiety, and Depression. Loss of Taste and Loss of Smell in some individuals did not respond to treatment, likely indicating structural damage following infection. This study suggests that neuromodulation may provide relief of Long COVID symptoms for at least a subset of individuals, and provides support for prospective studies of this potential treatment.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103195"},"PeriodicalIF":2.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566070224000493/pdfft?md5=6388d5242cbc119cb91ffaa825efb386&pid=1-s2.0-S1566070224000493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141398162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adrenergic relaxations in an in situ urinary bladder model evoked by stimulation of sensory pelvic and pudendal nerves in the rat","authors":"Johanna Stenqvist, Gunnar Tobin","doi":"10.1016/j.autneu.2024.103194","DOIUrl":"10.1016/j.autneu.2024.103194","url":null,"abstract":"<div><p>Urinary bladder dysfunction might be related to disturbances at different levels of the micturition reflex arc. The current study aimed to further develop and evaluate a split bladder model for detecting and analysing relaxatory signalling in the rat urinary bladder. The model allows for discrimination between effects at the efferent and the afferent side of the innervation. In <em>in vivo</em> experiments, the stimulation at a low frequency (1 Hz) of the ipsilateral pelvic nerve tended to evoke relaxation of the split bladder half (contralateral side; −1.0 ± 0.4 mN; <em>n</em> = 5), in contrast to high frequency-evoked contractions. In preparations in which the contralateral pelvic nerve was cut the relaxation occurred at a wider range of frequencies (0.5–2 Hz). In separate experiments, responses to 1 and 2 Hz were studied before and after intravenous injections of propranolol (1 mg/kg IV). The presence of propranolol significantly shifted the relaxations into contractions. Also, electrical stimulation of the ipsilateral pudendal nerve evoked relaxations of similar magnitude as for the pelvic stimulations, which were also affected by propranolol. In control <em>in vitro</em> experiments, substances with β-adrenoceptor agonism, in contrast to a selective α-agonist, evoked relaxations. The current study shows that the split bladder model can be used for <em>in vivo</em> studies of relaxations. In the model, reflex-evoked sympathetic responses caused relaxations at low intensity stimulation. The involvement of β-adrenoceptors is supported by the sensitivity to propranolol and by the <em>in vitro</em> observations.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103194"},"PeriodicalIF":2.7,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566070224000481/pdfft?md5=340622dfbef65025e59e5becd8037c03&pid=1-s2.0-S1566070224000481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myles W. O'Brien , Beverly D. Schwartz , Jennifer L. Petterson , Molly K. Courish , Madeline E. Shivgulam , Derek S. Kimmerly
{"title":"Nadir blood pressure responses to longer consecutive cardiac cycle sequences absent of sympathetic bursts are associated with popliteal endothelial-dependent dilation","authors":"Myles W. O'Brien , Beverly D. Schwartz , Jennifer L. Petterson , Molly K. Courish , Madeline E. Shivgulam , Derek S. Kimmerly","doi":"10.1016/j.autneu.2024.103193","DOIUrl":"https://doi.org/10.1016/j.autneu.2024.103193","url":null,"abstract":"<div><h3>Purpose</h3><p>The nadir pressure responses to cardiac cycles absent of muscle sympathetic nerve activity (MSNA) bursts (or non-bursts) are typically reported in studies quantifying sympathetic transduction, but the information gained by studying non-bursts is unclear. We tested the hypothesis that longer sequences of non-bursts (≥8 cardiac cycles) would be associated with a greater nadir diastolic blood pressure (DBP) and that better popliteal artery function would be associated with an augmented reduction in DBP.</p></div><div><h3>Methods</h3><p>Resting beat-by-beat DBP (via finger photoplethysmography) and common peroneal nerve MSNA (via microneurography) were recorded in 39 healthy, adults (age 23.4 ± 5.3 years; 19 females). For each cardiac cycle absent of MSNA bursts, the mean nadir DBP (ΔDBP) during the 12 cardiac cycles following were determined, and separate analyses were conducted for ≥8 or < 8 cardiac cycle sequences. Popliteal artery endothelial-dependent (via flow-mediated dilation; FMD) and endothelial-independent vasodilation (via nitroglycerin-mediated dilation; NMD) were determined.</p></div><div><h3>Results</h3><p>The nadir DBP responses to sequences ≥8 cardiac cycles were larger (−1.40 ± 1.27 mmHg) than sequences <8 (−0.38 ± 0.46 mmHg; <em>p</em> < 0.001). In adjusting for sex and burst frequency (14 ± 8 bursts/min), larger absolute or relative FMD (<em>p</em> < 0.01), but not NMD (<em>p</em> > 0.53) was associated with an augmented nadir DBP. This overall DBP-FMD relationship was similar in sequences ≥8 (<em>p</em> = 0.04–0.05), but not <8 (<em>p</em> > 0.72).</p></div><div><h3>Conclusion</h3><p>The DBP responses to non-bursts, particularly longer sequences, were inversely associated with popliteal endothelial function, but not vascular smooth muscle sensitivity. This study provides insight into the information gained by quantifying the DBP responses to cardiac cycles absent of MSNA.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103193"},"PeriodicalIF":2.7,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johan Casper Grove Petersen , Rachel Becker , Lonnie G. Petersen
{"title":"Transcutaneous vagal nerve stimulation during lower body negative pressure","authors":"Johan Casper Grove Petersen , Rachel Becker , Lonnie G. Petersen","doi":"10.1016/j.autneu.2024.103192","DOIUrl":"10.1016/j.autneu.2024.103192","url":null,"abstract":"<div><h3>Background</h3><p>Para-sympathetic vagal activation has profound influence on heart rate and other cardiovascular parameters. We tested the hypothesis that transcutaneous Vagal Nerve Stimulation (tVNS) through the auricular branch of the vagus nerve would attenuate the normal sympathetic response to central blood volume reduction by lower body negative pressure (LBNP).</p></div><div><h3>Method</h3><p>10 healthy volunteers (6 female; age 21 ± 2 years; weight 62 ± 13 kg; height 167 ± 12 cm) were included in this cross-over design trial. After 15 min rest in supine position, subjects underwent three 15-min periods of 30 mmHg LBNP intervention with and without cyclic tVNS stimulation. Continuous cardiovascular parameters (Nexfin) were recorded.</p></div><div><h3>Results</h3><p>Overall tVNS did not convincingly attenuate sympathetic response to central hypovolemia. Deactivation of the tVNS during LBNP resulted in increased MAP at 2.3 ± 0.5 mmHg (P < 0.001). Comparing the cyclic actual active stimulation periods to periods with pause during tVNS intervention showed a decrease in HR by 72.9 ± 11.2 to 70.2 ± 11.6 bpm (mean ± SD; P < 0.05), and concomitant increases in SV (86.0 ± 12.1 to 87.2 ± 12.6 mL; P < 0.05), MAP (82.9 ± 6.3 to 84.0 ± 6.2 mmHg; P < 0.05) and TPR (1116.0 ± 111.1 to 1153 ± 104.8 dyn*s/cm5; P < 0.05).</p></div><div><h3>Conclusion</h3><p>tVNS in 30 s cycles during LBNP can selectively attenuate HR, prompting a compensatory augmented sympathetic response. It would appear the method used in this study at least, has an isolated cardiac inhibitory effect probably mediated by augmented vagal activity on the sinoatrial or atrio-ventricular node, possibly in combination with reduced activity in the sympathetic cardiac nerve.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103192"},"PeriodicalIF":2.7,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph M. Stock , Nathan T. Romberger , Ronald K. McMillan , Jae Woo Chung , Megan M. Wenner , Sean D. Stocker , William B. Farquhar , Roxana G. Burciu
{"title":"Acute hypernatremia increases functional connectivity of NaCl sensing regions in the human brain: An fMRI pilot study","authors":"Joseph M. Stock , Nathan T. Romberger , Ronald K. McMillan , Jae Woo Chung , Megan M. Wenner , Sean D. Stocker , William B. Farquhar , Roxana G. Burciu","doi":"10.1016/j.autneu.2024.103182","DOIUrl":"10.1016/j.autneu.2024.103182","url":null,"abstract":"<div><p>Rodent studies demonstrated specialized sodium chloride (NaCl) sensing neurons in the circumventricular organs, which mediate changes in sympathetic nerve activity, arginine vasopressin, thirst, and blood pressure. However, the neural pathways involved in NaCl sensing in the human brain are incompletely understood. The purpose of this pilot study was to determine if acute hypernatremia alters the functional connectivity of NaCl-sensing regions of the brain in healthy young adults. Resting-state fMRI scans were acquired in 13 participants at baseline and during a 30 min hypertonic saline infusion (HSI). We used a seed-based approach to analyze the data, focusing on the subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) as regions of interest (ROIs). Blood chemistry and perceived thirst were assessed pre- and post-infusion. As expected, serum sodium increased from pre- to post-infusion in the HSI group. The primary finding of this pilot study was that the functional connectivity between the SFO and a cluster within the OVLT increased from baseline to the late-phase of the HSI. Bidirectional connectivity changes were found with cortical regions, with some regions showing increased connectivity with sodium-sensing regions while others showed decreased connectivity. Furthermore, the functional connectivity between the SFO and the posterior cingulate cortex (a control ROI) did not change from baseline to the late-phase of the HSI. This finding indicates a distinct response within the NaCl sensing network in the human brain specifically related to acute hypernatremia that will need to be replicated in large-scale studies.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"254 ","pages":"Article 103182"},"PeriodicalIF":2.7,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566070224000365/pdfft?md5=0980a5424eec2ee1da02ae4378a25afa&pid=1-s2.0-S1566070224000365-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei-Ying Sarah Chan , Lu-Yuan Lee , Paul W. Davenport
{"title":"Neural mechanisms of respiratory interoception","authors":"Pei-Ying Sarah Chan , Lu-Yuan Lee , Paul W. Davenport","doi":"10.1016/j.autneu.2024.103181","DOIUrl":"10.1016/j.autneu.2024.103181","url":null,"abstract":"<div><p>Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"253 ","pages":"Article 103181"},"PeriodicalIF":2.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566070224000353/pdfft?md5=0fef0129abadc1bc724cfa7b6d0e9c9f&pid=1-s2.0-S1566070224000353-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140776314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interoceptive signals from the heart and coronary circulation in health and disease","authors":"Jonathan P. Moore","doi":"10.1016/j.autneu.2024.103180","DOIUrl":"https://doi.org/10.1016/j.autneu.2024.103180","url":null,"abstract":"<div><p>This review considers interoceptive signalling from the heart and coronary circulation. Vagal and cardiac sympathetic afferent sensory nerve endings are distributed throughout the atria, ventricles (mainly left), and coronary artery. A small proportion of cardiac receptors attached to thick myelinated vagal afferents are tonically active during the cardiac cycle. Dependent upon location, these mechanoreceptors detect fluctuations in atrial volume and coronary arterial perfusion. Atrial volume and coronary arterial signals contribute to beat-to-beat feedback control and physiological homeostasis. Most cardiac receptors are attached to thinly myelinated or nonmyelinated C fibres, many of which are unresponsive to the cardiac cycle. Of these, there are many chemically sensitive cardiac receptors which are activated during myocardial stress by locally released endogenous substances. In contrast, some tonically inactive receptors become activated by irregular ventricular wall mechanics or by distortion of the ischaemic myocardium. Furthermore, some are excited both by chemical mediators of ischaemia and wall abnormalities. Reflex responses arising from cardiac receptors attached to thinly myelinated or nonmyelinated are complex. Impulses that project centrally through vagal afferents elicit sympathoinhibition and hypotension, whereas impulses travelling in cardiac sympathetic afferents and spinal pathways elicit sympathoexcitation and hypertension. Two opposing cardiac reflexes may provide a mechanism for fine-tuning a composite haemodynamic response during myocardial stress. Sympathetic afferents provide the primary pathway for transmission of cardiac nociception to the central nervous system. However, activation of sympathetic afferents may increase susceptibility to life-threatening arrhythmias. Notably, the cardiac sympathetic afferent reflex predominates in pathophysiological states including hypertension and heart failure.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"253 ","pages":"Article 103180"},"PeriodicalIF":2.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anticipating noxious stimulation rather than afferent nociceptive input may evoke pupil asymmetry","authors":"Peter D. Drummond","doi":"10.1016/j.autneu.2024.103179","DOIUrl":"https://doi.org/10.1016/j.autneu.2024.103179","url":null,"abstract":"<div><p>Unilateral nociceptive stimulation is associated with subtle signs of pupil asymmetry that may reflect lateralized activity in the locus coeruleus. To explore drivers of this pupil asymmetry, electrical stimuli, delivered alone or 200 ms before or after an acoustic startle stimulus, were administered to one ankle under four experimental conditions: with or without a 1.6 s anticipatory period, or while the forearm ipsilateral or contralateral to the electrical stimulus was heated tonically to induce moderate pain (15 healthy participants in each condition). Pupil diameter was measured at the start of each trial, at stimulus delivery, and each second for 5 s after stimulus delivery. At the start of the first trial, the pupil ipsilateral to the side on which electric shocks were later delivered was larger than the contralateral pupil. Both pupils dilated robustly during the anticipatory period and dilated further during single- and dual-stimulus trials. However, pupil asymmetry persisted throughout the experiment. Tonically-applied forearm heat-pain modulated the pupillary response to phasic electrical stimuli, with a slight trend for dilatation to be greater contralateral to the forearm being heated. Together, these findings suggest that focusing anxiously on the expected site of noxious stimulation was associated with dilatation of the ipsilateral pupil whereas phasic nociceptive stimuli and psychological arousal triggered bilateral pupillary dilatation. It was concluded that preparatory cognitive activity rather than phasic afferent nociceptive input is associated with pupillary signs of lateralized activity in the locus coeruleus.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"253 ","pages":"Article 103179"},"PeriodicalIF":2.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156607022400033X/pdfft?md5=21513025dc81f1652e126082e9632970&pid=1-s2.0-S156607022400033X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}