Biological Bulletin最新文献

筛选
英文 中文
Index to Volume 243, December 2022 第243卷索引,2022年12月
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-12-01 DOI: 10.1086/723718
{"title":"Index to Volume 243, December 2022","authors":"","doi":"10.1086/723718","DOIUrl":"https://doi.org/10.1086/723718","url":null,"abstract":"","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43733937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Circadian Rhythm of Visual Sensitivity in the American Lobster, Homarus americanus. 美洲龙虾视觉敏感性的昼夜节律。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-12-01 DOI: 10.1086/721753
Winsor H Watson, Kyle Jenks, Colin Whitworth
{"title":"A Circadian Rhythm of Visual Sensitivity in the American Lobster, <i>Homarus americanus</i>.","authors":"Winsor H Watson,&nbsp;Kyle Jenks,&nbsp;Colin Whitworth","doi":"10.1086/721753","DOIUrl":"https://doi.org/10.1086/721753","url":null,"abstract":"<p><p>AbstractTo determine whether eyes of American lobsters (<i>Homarus americanus</i>) are more sensitive to light at night than during the day, electroretinograms were continuously recorded from 23 adult lobsters for at least 3 days (range: 3 to 9 days) in constant darkness. A green light-emitting diode, mounted 10 cm away from the eyes, was briefly flashed every 2 minutes to evoke the electroretinogram. The average increase in the response to a light flash, between the minimum during the subjective day and the maximum during the subjective night, was 105.6% ± 38.8%; and there was a statistically significant difference between day and night responses. This change in visual sensitivity took place while lobsters were held in constant darkness, suggesting that it was due to the influence of a circadian clock. The average period (tau) for the 10 animals that expressed significant circadian rhythms was 23.4 ± 0.8 hours. Previous studies have demonstrated that lobsters have circadian clocks that influence their locomotor activity; and the present data suggest that this is also true for their eyes, leading to an increase in their visual sensitivity at night, when they are typically most active.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 3","pages":"353-358"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9073838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is It in the Stars? Exploring the Relationships between Species' Traits and Sea Star Wasting Disease. 是在星星上吗?物种性状与海星消瘦病关系的探讨。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-12-01 DOI: 10.1086/722800
Lauren M Schiebelhut, Melina Giakoumis, Rita Castilho, Valentina E Garcia, John P Wares, Gary M Wessel, Michael N Dawson
{"title":"Is It in the Stars? Exploring the Relationships between Species' Traits and Sea Star Wasting Disease.","authors":"Lauren M Schiebelhut,&nbsp;Melina Giakoumis,&nbsp;Rita Castilho,&nbsp;Valentina E Garcia,&nbsp;John P Wares,&nbsp;Gary M Wessel,&nbsp;Michael N Dawson","doi":"10.1086/722800","DOIUrl":"https://doi.org/10.1086/722800","url":null,"abstract":"<p><p>AbstractAn explanation for variation in impacts of sea star wasting disease across asteroid species remains elusive. Although various traits have been suggested to play a potential role in sea star wasting susceptibility, currently we lack a thorough comparison that explores how life-history and natural history traits shape responses to mass mortality across diverse asteroid taxa. To explore how asteroid traits may relate to sea star wasting, using available data and recognizing the potential for biological correlations to be driven by phylogeny, we generated a supertree, tested traits for phylogenetic association, and evaluated associations between traits and sea star wasting impact. Our analyses show no evidence for a phylogenetic association with sea star wasting impact, but there does appear to be phylogenetic association for a subset of asteroid life-history traits, including diet, substrate, and reproductive season. We found no relationship between sea star wasting and developmental mode, diet, pelagic larval duration, or substrate but did find a relationship with minimum depth, reproductive season, and rugosity (or surface complexity). Species with the greatest sea star wasting impacts tend to have shallower minimum depth distributions, they tend to have their median reproductive period 1.5 months earlier, and they tend to have higher rugosities relative to species less affected by sea star wasting. Fully understanding sea star wasting remains challenging, in part because dramatic gaps still exist in our understanding of the basic biology and phylogeny of asteroids. Future studies would benefit from a more robust phylogenetic understanding of sea stars, as well as leveraging intra- and interspecific comparative transcriptomics and genomics to elucidate the molecular pathways responding to sea star wasting.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 3","pages":"315-327"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9443958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Climate Change Amelioration by Marine Producers: Does Dominance Predict Impact? 海洋生产者改善气候变化:优势预测影响吗?
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-12-01 DOI: 10.1086/721229
Samuel A Mahanes, Matthew E S Bracken, Cascade J B Sorte
{"title":"Climate Change Amelioration by Marine Producers: Does Dominance Predict Impact?","authors":"Samuel A Mahanes,&nbsp;Matthew E S Bracken,&nbsp;Cascade J B Sorte","doi":"10.1086/721229","DOIUrl":"https://doi.org/10.1086/721229","url":null,"abstract":"<p><p>AbstractClimate change threatens biodiversity worldwide, and assessing how those changes will impact communities will be critical for conservation. Dominant primary producers can alter local-scale environmental conditions, reducing temperature <i>via</i> shading and mitigating ocean acidification <i>via</i> photosynthesis, which could buffer communities from the impacts of climate change. We conducted two experiments on the coast of southeastern Alaska to assess the effects of a common seaweed species, <i>Neorhodomela oregona</i>, on temperature and pH in field tide pools and tide pool mesocosms. We found that <i>N. oregona</i> was numerically dominant in this system, covering >60% of habitable space in the pools and accounting for >40% of live cover. However, while <i>N. oregona</i> had a density-dependent effect on pH in isolated mesocosms, we did not find a consistent effect of <i>N. oregona</i> on either pH or water temperature in tide pools in the field. These results suggest that the amelioration of climate change impacts in immersed marine ecosystems by primary producers is not universal and likely depends on species' functional attributes, including photosynthetic rate and physical structure, in addition to abundance or dominance.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 3","pages":"299-314"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9073840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Formation of Coelomic Cavities during Abbreviated Development of the Brittle Star Ophioplocus esmarki. 海蛇尾(ophoplocus esmarki)缩短发育过程中体腔腔的形成。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-12-01 DOI: 10.1086/721954
Hyla C Sweet, Guy Azriel, Nasreen Jaff, Jacqueline Moser, Taylor A Riola, Christina Ideman, Melissa Barton, Jack Nelson, Madison M Lenhart
{"title":"Formation of Coelomic Cavities during Abbreviated Development of the Brittle Star <i>Ophioplocus esmarki</i>.","authors":"Hyla C Sweet,&nbsp;Guy Azriel,&nbsp;Nasreen Jaff,&nbsp;Jacqueline Moser,&nbsp;Taylor A Riola,&nbsp;Christina Ideman,&nbsp;Melissa Barton,&nbsp;Jack Nelson,&nbsp;Madison M Lenhart","doi":"10.1086/721954","DOIUrl":"https://doi.org/10.1086/721954","url":null,"abstract":"<p><p>AbstractIn brittle stars, the coelomic cavities that form during embryogenesis contribute to most of the internal organ systems of the juvenile. In the ancestral mode of development, the coelomic cavities begin with bilateral symmetry and play a minor role in the function of the ophiopluteus larva. However, the coelomic cavities undergo extensive changes during metamorphosis to set up the body systems of the juvenile brittle star. Many lineages of brittle stars have evolved life histories without the ophiopluteus larva. The non-feeding vitellaria larva has rapid development of juvenile structures. This work demonstrates the modifications to the origin and early development of the coelomic cavities in a vitellaria larva. Much of the archenteron forms an unpaired axocoel, hydrocoel, and somatocoel. The posterior-most portion of the archenteron forms the rudiment of the juvenile stomach. The right somatocoel and a portion of the left somatocoel form as invaginations of the lateral ectoderm. Later morphogenesis of the axocoel, the hydrocoel, and the two somatocoels is similar to what has been shown for brittle stars with an ophiopluteus larva. Confocal microscopy and three-dimensional modeling were used to show new details for the later morphogenesis of the coelomic cavities. The stone canal originates as an outgrowth of the hydrocoel between lobes 4 and 5. The hydrocoel lobes have minimal migration after they meet to complete the ring canal. The right somatocoel contributes to a component of the axial complex and perihemal system. A detailed description is given for how the left somatocoel contributes to multiple organ systems.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 3","pages":"283-298"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9443959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanistic Temperature-Size Rule Explanation Should Reconcile Physiological and Mortality Responses to Temperature. 机械温度大小规则解释应协调生理和死亡对温度的反应。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-10-01 DOI: 10.1086/722027
Asta Audzijonyte, Egle Jakubavičiūtė, Max Lindmark, Shane A Richards
{"title":"Mechanistic Temperature-Size Rule Explanation Should Reconcile Physiological and Mortality Responses to Temperature.","authors":"Asta Audzijonyte,&nbsp;Egle Jakubavičiūtė,&nbsp;Max Lindmark,&nbsp;Shane A Richards","doi":"10.1086/722027","DOIUrl":"https://doi.org/10.1086/722027","url":null,"abstract":"<p><p>AbstractThe temperature-size rule is one of the universal rules in ecology and states that ectotherms in warmer waters will grow faster as juveniles, mature at smaller sizes and younger ages, and reach smaller maximum body sizes. Many models have unsuccessfully attempted to reproduce temperature-size rule-consistent life histories by using two-term (anabolism and catabolism) Pütter-type growth models, such as the von Bertalanffy. Here, we present a physiologically structured individual growth model, which incorporates an energy budget and optimizes energy allocation to growth, reproduction, and reserves. Growth, maturation, and reproductive output emerge as a result of life-history optimization to specific physiological rates and mortality conditions. To assess which processes can lead to temperature-size rule-type life histories, we simulate 42 scenarios that differ in temperature and body size dependencies of intake, metabolism, and mortality rates. Results show that the temperature-size rule can emerge in two ways. The first way requires both intake and metabolism to increase with temperature, but the temperature-body size interaction of the two rates must lead to relatively faster intake increase in small individuals and relatively larger metabolism increase in large ones. The second way requires only higher temperature-driven natural mortality and faster intake rates in early life (no change in metabolic rates is needed). This selects for faster life histories with earlier maturation and increased reproductive output. Our model provides a novel mechanistic and evolutionary framework for identifying the conditions necessary for the temperature-size rule. It shows that the temperature-size rule is likely to reflect both physiological changes and life-history optimization and that use of von Bertalanffy-type models, which do not include reproduction processes, can hinder our ability to understand and predict ectotherm responses to climate change.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 2","pages":"220-238"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10441701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World? 缺氧和高温作为相互作用的应激源:在变化的世界中,可塑性会促进鱼类的恢复力吗?
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-10-01 DOI: 10.1086/722115
Madison L Earhart, Tessa S Blanchard, Adam A Harman, Patricia M Schulte
{"title":"Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World?","authors":"Madison L Earhart,&nbsp;Tessa S Blanchard,&nbsp;Adam A Harman,&nbsp;Patricia M Schulte","doi":"10.1086/722115","DOIUrl":"https://doi.org/10.1086/722115","url":null,"abstract":"<p><p>AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 2","pages":"149-170"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10441707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation. 海洋无脊椎动物耐高温脱氧氧转运蛋白的结构-功能关系。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-10-01 DOI: 10.1086/722472
Christopher J Coates, Flávia A Belato, Kenneth M Halanych, Elisa M Costa-Paiva
{"title":"Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation.","authors":"Christopher J Coates,&nbsp;Flávia A Belato,&nbsp;Kenneth M Halanych,&nbsp;Elisa M Costa-Paiva","doi":"10.1086/722472","DOIUrl":"https://doi.org/10.1086/722472","url":null,"abstract":"<p><p>AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 2","pages":"134-148"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10433502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Experimental Evolution Shows Body Size Decrease in Response to Hypoxia, with a Complex Effect on Plastic Size Response to Temperature. 实验进化表明,机体尺寸对缺氧的响应减小,对温度对塑料尺寸的响应有复杂的影响。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-10-01 DOI: 10.1086/722028
Aleksandra Walczyńska, Mateusz Sobczyk
{"title":"Experimental Evolution Shows Body Size Decrease in Response to Hypoxia, with a Complex Effect on Plastic Size Response to Temperature.","authors":"Aleksandra Walczyńska,&nbsp;Mateusz Sobczyk","doi":"10.1086/722028","DOIUrl":"https://doi.org/10.1086/722028","url":null,"abstract":"<p><p>AbstractThere is a scientific debate whether oxygen concentration may be a factor driving the pattern of size decrease at higher temperature. Central to this debate is the fact that oxygen availability relative to demand for living organisms decreases with increasing temperature. We examined whether rotifers <i>Lecane inermis</i> exposed to hypoxic conditions would evolve smaller sizes than rotifers exposed to normoxic conditions, using experimental evolution with the same fluctuating temperature but differentiated by three regimes of oxygen availability: normoxia, hypoxia throughout the whole thermal range, and hypoxia only at the highest temperature. Immediately after the six-month experiment (more than 90 generations), we tested the plasticity of size responses to temperature in three post-evolution groups, and we related these responses to fitness. The results show that normoxic rotifers had evolved significantly larger sizes than two hypoxic rotifer groups, which were similar in size. All three groups displayed similar plastic body size reductions in response to warming over the range of temperatures they were exposed to during the period of experimental evolution, but they showed different and complex responses at two temperatures below this range. Any type of plastic response to different temperatures resulted in a similar fitness pattern across post-evolution groups. We conclude that (i) these rotifers showed a genetic basis for the pattern of size decrease following evolution under both temperature-dependent and temperature-independent hypoxia; and (ii) plastic body size responds consistently to temperatures that are within the thermal range that the rotifers experienced during their evolutionary history, but responses become more noisy at novel temperatures, suggesting the importance of evolutionary responses to reliable environmental cues.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 2","pages":"272-281"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10441702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Impacts of Low Oxygen on Marine Life: Neglected, but a Crucial Priority for Research. 低氧对海洋生物的影响:被忽视,但研究的关键优先事项。
IF 1.6 4区 生物学
Biological Bulletin Pub Date : 2022-10-01 DOI: 10.1086/721468
Francisco O Borges, Eduardo Sampaio, Catarina P Santos, Rui Rosa
{"title":"Impacts of Low Oxygen on Marine Life: Neglected, but a Crucial Priority for Research.","authors":"Francisco O Borges,&nbsp;Eduardo Sampaio,&nbsp;Catarina P Santos,&nbsp;Rui Rosa","doi":"10.1086/721468","DOIUrl":"https://doi.org/10.1086/721468","url":null,"abstract":"<p><p>AbstractGlobal ocean O<sub>2</sub> content has varied significantly across the eons, both shaping and being shaped by the evolutionary history of life on planet Earth. Indeed, past O<sub>2</sub> fluctuations have been associated with major extinctions and the reorganization of marine biota. Moreover, its most recent iteration-now anthropogenically driven-represents one of the most prominent challenges for both marine ecosystems and human societies, with ocean deoxygenation being regarded as one of the main drivers of global biodiversity loss. Yet ocean deoxygenation has received far less attention than concurrent environmental variables of marine climate change, namely, ocean warming and acidification, particularly in the field of experimental marine ecology. Together with the lack of consistent criteria defining gradual and acute changes in O<sub>2</sub> content, a general lack of multifactorial studies featuring all three drivers and their interactions prevents an adequate interpretation of the potential effects of extreme and gradual deoxygenation. We present a comprehensive overview of the interplay between O<sub>2</sub> and marine life across space and time and discuss the current knowledge gaps and future steps for deoxygenation research. This work may also contribute to the ongoing call for an integrative perspective on the combined effects of these three drivers of change for marine organisms and ecosystems worldwide.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 2","pages":"104-119"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10441708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信