美洲龙虾视觉敏感性的昼夜节律。

IF 2.1 4区 生物学 Q2 BIOLOGY
Biological Bulletin Pub Date : 2022-12-01 DOI:10.1086/721753
Winsor H Watson, Kyle Jenks, Colin Whitworth
{"title":"美洲龙虾视觉敏感性的昼夜节律。","authors":"Winsor H Watson,&nbsp;Kyle Jenks,&nbsp;Colin Whitworth","doi":"10.1086/721753","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractTo determine whether eyes of American lobsters (<i>Homarus americanus</i>) are more sensitive to light at night than during the day, electroretinograms were continuously recorded from 23 adult lobsters for at least 3 days (range: 3 to 9 days) in constant darkness. A green light-emitting diode, mounted 10 cm away from the eyes, was briefly flashed every 2 minutes to evoke the electroretinogram. The average increase in the response to a light flash, between the minimum during the subjective day and the maximum during the subjective night, was 105.6% ± 38.8%; and there was a statistically significant difference between day and night responses. This change in visual sensitivity took place while lobsters were held in constant darkness, suggesting that it was due to the influence of a circadian clock. The average period (tau) for the 10 animals that expressed significant circadian rhythms was 23.4 ± 0.8 hours. Previous studies have demonstrated that lobsters have circadian clocks that influence their locomotor activity; and the present data suggest that this is also true for their eyes, leading to an increase in their visual sensitivity at night, when they are typically most active.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Circadian Rhythm of Visual Sensitivity in the American Lobster, <i>Homarus americanus</i>.\",\"authors\":\"Winsor H Watson,&nbsp;Kyle Jenks,&nbsp;Colin Whitworth\",\"doi\":\"10.1086/721753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractTo determine whether eyes of American lobsters (<i>Homarus americanus</i>) are more sensitive to light at night than during the day, electroretinograms were continuously recorded from 23 adult lobsters for at least 3 days (range: 3 to 9 days) in constant darkness. A green light-emitting diode, mounted 10 cm away from the eyes, was briefly flashed every 2 minutes to evoke the electroretinogram. The average increase in the response to a light flash, between the minimum during the subjective day and the maximum during the subjective night, was 105.6% ± 38.8%; and there was a statistically significant difference between day and night responses. This change in visual sensitivity took place while lobsters were held in constant darkness, suggesting that it was due to the influence of a circadian clock. The average period (tau) for the 10 animals that expressed significant circadian rhythms was 23.4 ± 0.8 hours. Previous studies have demonstrated that lobsters have circadian clocks that influence their locomotor activity; and the present data suggest that this is also true for their eyes, leading to an increase in their visual sensitivity at night, when they are typically most active.</p>\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721753\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721753","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了确定美洲大螯虾(Homarus americanus)的眼睛在夜间是否比白天对光线更敏感,我们连续记录了23只成年龙虾在持续黑暗条件下至少3天(范围:3 ~ 9天)的视网膜电图。一个绿色发光二极管安装在距离眼睛10厘米的地方,每两分钟短暂闪烁一次,以唤起视网膜电图。在主观白天的最小值和主观夜晚的最大值之间,对闪光的响应平均增加105.6%±38.8%;白天和晚上的反应有统计学上的显著差异。这种视觉敏感度的变化发生在龙虾处于持续黑暗的环境中时,这表明这是由于生物钟的影响。10只表达明显昼夜节律的动物的平均周期(tau)为23.4±0.8小时。先前的研究表明,龙虾有影响其运动活动的生物钟;目前的数据表明,这对他们的眼睛也是如此,导致他们在夜间的视觉灵敏度增加,而这通常是他们最活跃的时候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Circadian Rhythm of Visual Sensitivity in the American Lobster, Homarus americanus.

AbstractTo determine whether eyes of American lobsters (Homarus americanus) are more sensitive to light at night than during the day, electroretinograms were continuously recorded from 23 adult lobsters for at least 3 days (range: 3 to 9 days) in constant darkness. A green light-emitting diode, mounted 10 cm away from the eyes, was briefly flashed every 2 minutes to evoke the electroretinogram. The average increase in the response to a light flash, between the minimum during the subjective day and the maximum during the subjective night, was 105.6% ± 38.8%; and there was a statistically significant difference between day and night responses. This change in visual sensitivity took place while lobsters were held in constant darkness, suggesting that it was due to the influence of a circadian clock. The average period (tau) for the 10 animals that expressed significant circadian rhythms was 23.4 ± 0.8 hours. Previous studies have demonstrated that lobsters have circadian clocks that influence their locomotor activity; and the present data suggest that this is also true for their eyes, leading to an increase in their visual sensitivity at night, when they are typically most active.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Bulletin
Biological Bulletin 生物-海洋与淡水生物学
CiteScore
3.30
自引率
6.20%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信