Experimental Mechanics最新文献

筛选
英文 中文
On the Cover: An In-Situ Investigation of the Strain Partitioning and Failure Across the Layers in a Multi-Layered Steel 封面上:多层钢材跨层应变分化和破坏的现场研究
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-22 DOI: 10.1007/s11340-024-01073-x
{"title":"On the Cover: An In-Situ Investigation of the Strain Partitioning and Failure Across the Layers in a Multi-Layered Steel","authors":"","doi":"10.1007/s11340-024-01073-x","DOIUrl":"10.1007/s11340-024-01073-x","url":null,"abstract":"","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 5","pages":"593 - 593"},"PeriodicalIF":2.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140802861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled Hydraulic-Mechanical Experimental System for Evaluating Dynamic Mechanical and Transport Behaviors of Deep Rocks 用于评估深层岩石动态力学和迁移行为的水力机械耦合实验系统
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-18 DOI: 10.1007/s11340-024-01063-z
R. Chen, G. Zhao, Y. Xu, W. Yao, W. Yao, K. Xia
{"title":"Coupled Hydraulic-Mechanical Experimental System for Evaluating Dynamic Mechanical and Transport Behaviors of Deep Rocks","authors":"R. Chen,&nbsp;G. Zhao,&nbsp;Y. Xu,&nbsp;W. Yao,&nbsp;W. Yao,&nbsp;K. Xia","doi":"10.1007/s11340-024-01063-z","DOIUrl":"10.1007/s11340-024-01063-z","url":null,"abstract":"<div><h3>Background</h3><p>The dynamic mechanical properties and permeability evolution of deep rocks under coupled osmotic-mechanical conditions are vital for evaluating the stability of surrounding rock in deep rock engineering and further improving deep mining efficiency. However, there is currently no valid experimental system to measure both the dynamic mechanical response and the permeability evolution of deep rocks.</p><h3>Objective</h3><p>In this study, a novel experimental system is developed for determining dynamic compressive properties and permeability evolution of deep rocks subjected to coupled differential pore pressure and confinement.</p><h3>Methods</h3><p>The experimental system is composed of a dynamic loading system, an in-situ stress system, a differential pore pressure system, and a data acquisition system. The differential pore pressure system is introduced in the dynamic loading system, and the validation of the proposed system is verified by checking the stress wave propagation in the bars and the dynamic force balance on the two loading ends of specimens. It indicates that the differential pore pressure device added to the dynamic loading system barely influences the measurement of the dynamic behaviors of rocks. A homogenous green sandstone (GS) is employed to verify the feasibility and reliability of the proposed system. Dynamic compressive strength, permeability evolution, and failure mode of GS under cyclic dynamic impact loading in combination with coupled osmotic-confining pressure are explored using the proposed system.</p><h3>Results</h3><p>The stress–strain curves change with the increase of impact number, and the cyclic impacts deteriorate the dynamic compressive strength of GS. The permeability of GS first increases and then decreases with the impact number. The differential pore pressure enhanced the permeability of GS under the same impact cycle. The main fracture mode of the GS specimen is mainly compressive-shear fracture in combination with a tensile fracture in the middle of the specimen due to the coupling effect of the reflected stress wave and the osmotic-confining pressure.</p><h3>Conclusions</h3><p>The proposed experimental system is valid and effective to measure and observe the dynamic compressive behaviors and permeability evolution of rocks under coupled osmotic-mechanical conditions.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"895 - 911"},"PeriodicalIF":2.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a Reliable Uncertainty Quantification in Residual Stress Measurements with Relaxation Methods: Finding Average Residual Stresses is a Well-Posed Problem 利用松弛法实现残余应力测量中可靠的不确定性量化:寻找平均残余应力是一个假设良好的问题
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-17 DOI: 10.1007/s11340-024-01066-w
M. Beghini, T. Grossi
{"title":"Towards a Reliable Uncertainty Quantification in Residual Stress Measurements with Relaxation Methods: Finding Average Residual Stresses is a Well-Posed Problem","authors":"M. Beghini,&nbsp;T. Grossi","doi":"10.1007/s11340-024-01066-w","DOIUrl":"10.1007/s11340-024-01066-w","url":null,"abstract":"<div><h3>Background</h3><p>In a previous work, the problem of identifying residual stresses through relaxation methods was demonstrated to be mathematically ill-posed. In practice, it means that the solution process is affected by a bias-variance tradeoff, where some theoretically uncomputable bias has to be introduced in order to obtain a solution with a manageable signal-to-noise ratio.</p><h3>Objective</h3><p>As a consequence, an important question arises: how can the solution uncertainty be quantified if a part of it is inaccessible? Additional physical knowledge could—in theory—provide a characterization of bias, but this process is practically impossible with presently available techniques.</p><h3>Methods</h3><p>A brief review of biases in established methods is provided, showing that ruling them out would require a piece of knowledge that is never available in practice. Then, the concept of average stresses over a distance is introduced, and it is shown that finding them generates a well-posed problem. A numerical example illustrates the theoretical discussion</p><h3>Results</h3><p>Since finding average stresses is a well-posed problem, the bias-variance tradeoff disappears. The uncertainties of the results can be estimated with the usual methods, and exact confidence intervals can be obtained.</p><h3>Conclusions</h3><p>On a broader scope, we argue that residual stresses and relaxation methods expose the limits of the concept of point-wise stress values, which instead works almost flawlessly when a natural unstressed state can be assumed, as in classical continuum mechanics (for instance, in the theory of elasticity). As a consequence, we are forced to focus on the effects of stress rather than on its point-wise evaluation.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"851 - 874"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01066-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Speed Impact Testing of UHMWPE Composite Using Orthogonal Arrays 使用正交阵列对超高分子量聚乙烯复合材料进行高速冲击测试
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-17 DOI: 10.1007/s11340-024-01064-y
T. Hannah, V. Martin, S. Ellis, R. H. Kraft
{"title":"High Speed Impact Testing of UHMWPE Composite Using Orthogonal Arrays","authors":"T. Hannah,&nbsp;V. Martin,&nbsp;S. Ellis,&nbsp;R. H. Kraft","doi":"10.1007/s11340-024-01064-y","DOIUrl":"10.1007/s11340-024-01064-y","url":null,"abstract":"<div><h3>Background</h3><p>Ultra high molecular weight polyethylene composites are fiber based composites used in armor applications. While some characterization has been conducted experimentally, this study varies multiple parameters simultaneously to investigate material response under a wide range of conditions.</p><h3>Objective</h3><p>This work focuses on characterizing the response of Dyneema<sup>®</sup> HB26 hard laminate composites under high-speed impacts to examine the influence of plate diameter, clamping pressure, and plate spacing on target performance. Additionally, micro Computer Tomography scans are used to nondestructively evaluate the damage evolution in the targets.</p><h3>Methods</h3><p>These scan results are used in concert with more traditional armor performance metrics to evaluate the effect of various parameters using the method of orthogonal array analysis. This technique allows for multiple variables to be investigated in the same test series, saving time and budget while still providing quality results across a range of variables and variable values.</p><h3>Results</h3><p>We conclude that of the parameters investigated, the plate spacing parameter has the largest effect on performance, followed by the plate diameter. Bolt torque was found to not have a significant impact on results, indicating that an edge clamping pressure is not critical to material response. Additionally, by examining the high resolution scans, we can quantify the damage with an effective damage angle and that this angle is a good predictor of performance. </p><h3>Conclusion</h3><p>Finally a damage theory involving the effective bending strength of the plates is discussed as an explanation for all of the results observed in this test series.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"823 - 838"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01064-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Ring-Projection-Based Two-Scale Approach for Accurate Digital Image Correlation of Large Translations and Rotations 基于环形投影的双尺度方法,实现大平移和大旋转的精确数字图像相关性
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-17 DOI: 10.1007/s11340-024-01070-0
P. Xie, Z.-R. Lu, G. Lin, W. Li, L. Wang
{"title":"A Ring-Projection-Based Two-Scale Approach for Accurate Digital Image Correlation of Large Translations and Rotations","authors":"P. Xie,&nbsp;Z.-R. Lu,&nbsp;G. Lin,&nbsp;W. Li,&nbsp;L. Wang","doi":"10.1007/s11340-024-01070-0","DOIUrl":"10.1007/s11340-024-01070-0","url":null,"abstract":"<div><h3>Background</h3><p>Digital image correlation (DIC) has been widely used for motion tracking and estimation, however, the process is often sensitive to the initial guess, especially under large translations and rotations.</p><h3>Objective</h3><p>To provide novel and effective solutions for the DIC in measuring large translations and rotations.</p><h3>Methods</h3><p>A ring-projection-based two-scale approach is proposed. In the <i>integer-pixel scale</i>, a novel ring projection scheme, including amplitude and phase correlations of the rings, is developed to quickly get the integer-pixel initial estimation of the translations and rotation. In the <i>sub-pixel scale</i>, the gradient-based inverse compositional Gauss-Newton (IC-GN) algorithm, which is free from repeat computation of Hessian matrix, is adopted to efficiently get the optimal motion parameters.</p><h3>Results</h3><p>The numerical example show that the absolute error is no more than 0.05 pixel for measured large translations and no more than 0.05<span>(^circ)</span> for measured large rotations. While test experiments on a rotated blade and a flexible arch demonstrate the effectiveness, accuracy and applicability of the proposed approach in measuring the rotating motion, flexible large deformation and vibrational modal parameters of structures.</p><h3>Conclusions</h3><p>The ability and effectiveness of the proposed approach for large translations and rotations measurement have been verified. Since large deformations and rotations are frequently encountered in rotating and flexible structures, the proposed approach is believed to constitute a feasible and powerful tool for static and dynamic deformation measurement of these structures.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"875 - 893"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dynamic Time Warping Approach to Access Fatigue Damage in Composite Pipes 获取复合管道疲劳损伤的动态时间扭曲方法
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-17 DOI: 10.1007/s11340-024-01067-9
M.V.L. Pazini, L. de Abreu Corrêa, H. Haan, G. Zanon, T.G.R. Clarke
{"title":"A Dynamic Time Warping Approach to Access Fatigue Damage in Composite Pipes","authors":"M.V.L. Pazini,&nbsp;L. de Abreu Corrêa,&nbsp;H. Haan,&nbsp;G. Zanon,&nbsp;T.G.R. Clarke","doi":"10.1007/s11340-024-01067-9","DOIUrl":"10.1007/s11340-024-01067-9","url":null,"abstract":"<div><p>Composite pressure vessels are seeing increasing demand in the oil and gas sector due to their excellent corrosion resistance. However, the assessment of the fatigue state of those structures still an open question. The goal of this work is use elastic wave data to access the fatigue damage (exudation). The Dynamic Time Warping method is proposed as a means of extracting features from guided wave ultrasound data that can describe the on-going fatigue induced damage of glass-fibre reinforced plastic pipes under fatigue-cycle loading. To test its efficiency, three pipe samples were fatigue tested to failure under internal pressure cycles with maximum values of 45 bar, 55 bar and 65 bar, and minimum pressures equal to 10% of the maximum, at a frequency of 0.8 Hz. A Guided Wave monitoring system consisting of a set of permanently attached piezoelectric sensors produced signals which were processed to obtain the Dynamic Time Warping distance, that was then used to obtain a Damage Index that expresses the cumulative fatigue damage suffered by the samples for each loading level. These results were comparable to data obtained from surface-mounted strain-gauges, even though temperature variations of up to 20 °C occurred during the tests and no direct temperature compensation was applied to the GW signals. The Dynamic Time Warping distance presents smaller influence of temperature and was able to better access the exudation of the samples.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"839 - 849"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue Testing Approach Utilising Machining Cutting Forces and Fixture Design 利用加工切削力和夹具设计的疲劳测试方法
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-15 DOI: 10.1007/s11340-024-01068-8
V. Okenyi, S. Afazov, N. Mansfield, P. Siegkas, A. Serjouei, M. Bodaghi
{"title":"Fatigue Testing Approach Utilising Machining Cutting Forces and Fixture Design","authors":"V. Okenyi,&nbsp;S. Afazov,&nbsp;N. Mansfield,&nbsp;P. Siegkas,&nbsp;A. Serjouei,&nbsp;M. Bodaghi","doi":"10.1007/s11340-024-01068-8","DOIUrl":"10.1007/s11340-024-01068-8","url":null,"abstract":"<div><h3>Background</h3><p>Traditional fatigue testing methods can be expensive due to the need of specialised equipment for engineering materials and structures. Thus, a new fatigue testing approach utilising machining cutting forces to induce cyclic stresses, enabling fatigue life assessment of engineering materials and structures, has been developed.</p><h3>Objective</h3><p>This research aims to develop and verify a new testing approach using machining processes to enable the fatigue life assessment of engineering materials and structures. This is achieved by the utilisation of machining-induced cutting forces to generate cyclic stresses into welded samples used in applications of wind turbine monopile structures.</p><h3>Methods</h3><p>The methodology employes the development of a fixture encompassed with strain gauges and purposefully designed machining operations to mimic the cyclic stresses experienced in real applications. The machining-based fatigue testing approach was demonstrated on welded samples by replicating cyclic stresses of offshore wind turbine monopiles subject to in-service loads.</p><h3>Results</h3><p>The results show that rapid fatigue testing of engineering materials and structures is possible by utilising existing machine tools and centres, which are widely accessible to industry. Cyclic stresses were induced in welded structural steel samples proving the concept of this method.</p><h3>Conclusion</h3><p>This novel fatigue testing method showed that cyclic stresses can be induced by machining cutting forces to address real application needs. The key advantages are that this method can be quickly set up in industry, enabling fast fatigue testing that can lead to reduction of lead times for product and process development of industrial components.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"963 - 968"},"PeriodicalIF":2.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01068-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Bimodular Material Parameters via a Semi-Closed Form Solution of the Brazilian Test 通过巴西试验的半封闭形式解确定双模材料参数
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-12 DOI: 10.1007/s11340-024-01058-w
H. Hong, T.N. Baranger
{"title":"Identification of Bimodular Material Parameters via a Semi-Closed Form Solution of the Brazilian Test","authors":"H. Hong,&nbsp;T.N. Baranger","doi":"10.1007/s11340-024-01058-w","DOIUrl":"10.1007/s11340-024-01058-w","url":null,"abstract":"<div><h3>Background</h3><p>Digital Image Correlation (DIC) is an advanced measurement technique capable of capturing full-field surface displacements in a non-invasive manner. However, the application of such measurements in the identification of bimodular materials remains insufficiently exploited.</p><h3>Objective</h3><p>Recalibration with Analytic Solution Updating (RAU) has been proposed for the identification of mechanical elastic parameters of asymmetric constitutive law behavior using the Brazilian test. This method accomplishes identification by minimizing the gap between the measurements and the semi-closed form solution.</p><h3>Methods</h3><p>Two types of data are employed: the first derived from the semi-closed form solution and the second measured on a <i>42</i>-day aged mortar specimen using DIC. In the RAU method, three distinct cases are implemented to identify mechanical elastic parameters. These cases are determined by the nature of the data utilized, which can be categorized into axial displacement field, strains at the center, and full-field surface displacement measured on a given specimen area.</p><h3>Results</h3><p>The RAU method successfully identified the compressive, tensile Young’s modulus, and the compressive Poisson’s ratio from the surface data provided. The identification with full-field surface displacement presented the highest level of accuracy in the RAU method using the identified results of synthetic data.</p><h3>Conclusion</h3><p>The RAU method demonstrates significant accuracy and practicality in identifying the mechanical elastic parameters of bimodular materials.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"805 - 821"},"PeriodicalIF":2.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Contact Stresses on Crack-Tip Stress Field: A Multiparameter Approach Using Digital Photoelasticity 接触应力对裂纹尖端应力场的影响:利用数字光弹性的多参数方法
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-04 DOI: 10.1007/s11340-024-01053-1
G. Ramaswamy, K. Ramesh, U. Saravanan
{"title":"Influence of Contact Stresses on Crack-Tip Stress Field: A Multiparameter Approach Using Digital Photoelasticity","authors":"G. Ramaswamy,&nbsp;K. Ramesh,&nbsp;U. Saravanan","doi":"10.1007/s11340-024-01053-1","DOIUrl":"10.1007/s11340-024-01053-1","url":null,"abstract":"<div><h3>Background</h3><p>The interaction of stress fields between cracks or cracks with discontinuities like holes, etc., has been widely studied. Another crucial class of problems include cracks interacting with contact stresses but there has been no work to study them systematically.</p><h3>Objective</h3><p>This study aims to understand the role of contact stress in influencing the crack-tip stress field which is essential for reliable estimation of stress intensity factors (SIFs) experimentally.</p><h3>Method</h3><p>The contact stress influence on crack-tip isochromatic features is initially discussed using an experimental result for a moderately-deep beam with a small crack. SIFs are evaluated using the over-deterministic nonlinear least squares method. The crack-contact stress interaction is then studied by a superposed crack-contact analytical solution. Photoelastic experiments are conducted for a cracked moderately-deep beam subjected to three-point bending. The SIFs evaluated using the multiparameter solution compare well with finite element predictions. Subsequently, multiple interaction configurations are experimentally examined in a cracked moderately-slender beam by varying the magnitude and position of the contact load relative to the crack.</p><h3>Results</h3><p>Even a small crack shows a noticeable change in isochromatics due to influence of contact stress and a two-parameter solution is inadequate here. A multiparameter crack-tip solution is observed to capture the isochromatic fringe field very effectively towards SIF evaluation.</p><h3>Conclusion</h3><p>The changes in isochromatics at a crack-tip due to contact stresses are significant. A systematic analysis shows that with appropriate data collection, the multiparameter solution provides SIFs with very little uncertainty in the presence of contact stresses with varying complexities.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"785 - 804"},"PeriodicalIF":2.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Situ Characterization on Fracture Toughness of Thermal Barrier Coatings Under Tension by J-Integral with Digital Image Correlation at High Temperatures 利用 J-Integral 和数字图像相关性对高温下隔热涂层在拉伸状态下的断裂韧性进行原位表征
IF 2 3区 工程技术
Experimental Mechanics Pub Date : 2024-04-03 DOI: 10.1007/s11340-024-01061-1
H. Bai, Z. Qu, H. Yang, D. Fang
{"title":"In-Situ Characterization on Fracture Toughness of Thermal Barrier Coatings Under Tension by J-Integral with Digital Image Correlation at High Temperatures","authors":"H. Bai,&nbsp;Z. Qu,&nbsp;H. Yang,&nbsp;D. Fang","doi":"10.1007/s11340-024-01061-1","DOIUrl":"10.1007/s11340-024-01061-1","url":null,"abstract":"<div><h3>Background</h3><p>The elastic–plastic fracture toughness (<i>J</i><sub><i>c</i></sub>) is an important mechanical parameter for studying the failure behavior of air plasma-sprayed (APS) thermal barrier coatings (TBC) at high temperatures.</p><h3>Objective</h3><p>This study aims to: (1) develop an effective test method to characterize the <i>J</i><sub><i>c</i></sub> of TBC at high temperatures; (2) acquire accurate <i>J</i><sub><i>c</i></sub> data for TBC at high temperatures; (3) analyze the influence of plasticity of top-coat on the <i>J</i><sub><i>c</i></sub> characterization.</p><h3>Methods</h3><p>The elastic–plastic Ramberg–Osgood equation of the ceramic top-coat and the deformation fields of single edge notched tension (SENT) specimens were measured by high-temperature <i>in-situ</i> tension with digital image correlation (DIC) system. The <i>J</i><sub><i>c</i></sub> of TBC was calculated by the numerical <i>J</i>-integral with DIC-measured (DIC-<i>J)</i> deformation fields by adopting Ramberg–Osgood equation of the top-coat. The finite element analysis (FEA) method was adopted to analyze the influence of plasticity of top-coat on the <i>J</i><sub><i>c</i></sub> characterization.</p><h3>Results</h3><p>The curves of <i>J</i><sub><i>c</i></sub> varying with crack propagation length (Δ<i>a</i>) of TBC were obtained and were expressed as <i>J</i><sub><i>R</i></sub> = 24.47 × [ 1 + 1.0446 × (<span>(widetilde{Delta a})</span>)<sup>0.7624</sup>] J/m<sup>2</sup> and <i>J</i><sub><i>R</i></sub> = 16.52 × [ 1 + 1.4806 × (<span>(widetilde{Delta a})</span>)<sup>0.6742</sup>] J/m<sup>2</sup> at 800 and 1000 ℃, respectively.</p><h3>Conclusions</h3><p>A high-temperature <i>in-situ</i> tensile test of SENT specimens combined with the DIC-<i>J</i> method was developed to characterize <i>J</i><sub><i>c</i></sub> of TBC. The <i>J</i><sub><i>c</i></sub> of TBC displays a rising resistance curve behavior, and FEA results indicated that <i>J</i><sub><i>c</i></sub> would be underestimated without considering the plasticity of the top-coat at 800 and 1000 ℃.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 5","pages":"761 - 782"},"PeriodicalIF":2.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信