Effects of Material Orientation and Degree of Deformation on the Tension–Compression Asymmetry of AA2024‒T4

IF 2 3区 工程技术 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
H. Wang, Y. Wang, A. Yu, M. Gu, G. Chen, X. Li
{"title":"Effects of Material Orientation and Degree of Deformation on the Tension–Compression Asymmetry of AA2024‒T4","authors":"H. Wang,&nbsp;Y. Wang,&nbsp;A. Yu,&nbsp;M. Gu,&nbsp;G. Chen,&nbsp;X. Li","doi":"10.1007/s11340-025-01147-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Accurate prediction of the plastic behavior of AA2024‒T4 requires a deep understanding of the mechanical response of the material under different loading conditions. For alloy sheets, the material orientation and deformation are two important factors whose effects should be clarified.</p><h3>Objective</h3><p>This work focuses on the complex relationships among the material orientation, deformation, and tension‒compression asymmetry of AA2024‒T4.</p><h3>Methods</h3><p>The tension, compression, and shear responses of materials at different orientations are experimentally investigated through dog bone, cuboid, and butterfly specimen, respectively. In addition, the tension‒compression asymmetry is embedded in the anisotropic parameters rather than an additional independent parameter.</p><h3>Results</h3><p>Tension‒compression asymmetry is sensitive to orientation and degree of deformation. The tension‒compression asymmetry tends to be stable with increasing degree of deformation. But the evolution law of tension–compression asymmetry can be affected by orientation.</p><h3>Conclusions</h3><p>An additional parameter describing the asymmetry is required for isotropic plastic modeling. This parameter can be ignored when the anisotropic situation is considered because such an effect will be implied in the anisotropic parameters. In addition, the influence of degree of deformation on tension–compression asymmetry and plastic anisotropy can be reflected by the evolutions of anisotropic parameters.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 2","pages":"255 - 268"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-025-01147-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Accurate prediction of the plastic behavior of AA2024‒T4 requires a deep understanding of the mechanical response of the material under different loading conditions. For alloy sheets, the material orientation and deformation are two important factors whose effects should be clarified.

Objective

This work focuses on the complex relationships among the material orientation, deformation, and tension‒compression asymmetry of AA2024‒T4.

Methods

The tension, compression, and shear responses of materials at different orientations are experimentally investigated through dog bone, cuboid, and butterfly specimen, respectively. In addition, the tension‒compression asymmetry is embedded in the anisotropic parameters rather than an additional independent parameter.

Results

Tension‒compression asymmetry is sensitive to orientation and degree of deformation. The tension‒compression asymmetry tends to be stable with increasing degree of deformation. But the evolution law of tension–compression asymmetry can be affected by orientation.

Conclusions

An additional parameter describing the asymmetry is required for isotropic plastic modeling. This parameter can be ignored when the anisotropic situation is considered because such an effect will be implied in the anisotropic parameters. In addition, the influence of degree of deformation on tension–compression asymmetry and plastic anisotropy can be reflected by the evolutions of anisotropic parameters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Mechanics
Experimental Mechanics 物理-材料科学:表征与测试
CiteScore
4.40
自引率
16.70%
发文量
111
审稿时长
3 months
期刊介绍: Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome. Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信